• Title/Summary/Keyword: post-tensioned method

Search Result 60, Processing Time 0.022 seconds

Numerical study of mono-strand anchorage mechanism under service load

  • Marceau, D.;Fafard, M.;Bastien, J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.475-491
    • /
    • 2004
  • Anchorage devices play an important role in post-tensioned bridge structures since they must sustain heavy loads in order to permit the transfer of the prestressing force to the structure. In external prestressing, the situation is even more critical since the anchorage mechanisms, with the deviators, are the only links between the structure and the tendons throughout the service life of the structure. The behaviour of anchorage devise may be studied by using the finite element method. To do so, each component of the anchorage must be adequately represented in order to approximate the anchor mechanism as accurately as possible. In particular, the modelling of the jaw/tendon device may be carried out using the real geometry of these two components with an appropriate constitutive contact law or by replacing these components by a single equivalent. This paper presents the numerical study of a mono-strand anchorage device. The results of a comparison between two different representations of the jaw/tendon device, either as two distinct components or as a single equivalent, will be examined. In the double-component setup, the influence of the wedge configuration composing the jaw, and the influence of lubrication of the anchor, will be assessed.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

Comparison of behavior of high-rise residential buildings with and without post-tensioned transfer plate system

  • Byeonguk Ahn;Fahimeh Yavartanoo;Jang-Keun Yoon;Su-Min Kang;Seungjun Kim;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • Shear wall is commonly used as a lateral force resisting system of concrete mid-rise and high-rise buildings, but it brings challenges in providing relatively large space throughout the building height. For this reason, the structure system where the upper structure with bearing, non-bearing and/or shear walls that sits on top of a transfer plate system supported by widely spaced columns at the lower stories is preferred in some regions, particularly in low to moderate seismic regions in Asia. A thick reinforced concrete (RC) plate has often been used as a transfer system, along with RC transfer girders; however, the RC plate becomes very thick for tall buildings. Applying the post-tensioning (PT) technique to RC plates can effectively reduce the thickness and reinforcement as an economical design method. Currently, a simplified model is used for numerical modeling of PT transfer plate, which does not consider the interaction of the plate and the upper structure. To observe the actual behavior of PT transfer plate under seismic loads, it is necessary to model whole parts of the structure and tendons to precisely include the interaction and the secondary effect of PT tendons in the results. This research evaluated the seismic behavior of shear wall-type residential buildings with PT transfer plates for the condition that PT tendons are included or excluded in the modeling. Three-dimensional finite element models were developed, which includes prestressing tendon elements, and response spectrum analyses were carried out to evaluate seismic forces. Two buildings with flat-shape and L-shape plans were considered, and design forces of shear walls and transfer columns for a system with and without PT tendons were compared. The results showed that, in some cases, excluding PT tendons from the model leads to an unrealistic estimation of the demands for shear walls sit on transfer plate and transfer columns due to excluding the secondary effect of PT tendons. Based on the results, generally, the secondary effect reduces shear force demand and axial-flexural demands of transfer columns but increases the shear force demand of shear walls. The results of this study suggested that, in addition to the effect of PT on the resistance of transfer plate, it is necessary to include PT tendons in the modeling to consider its effect on force demand.

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.

Tension Estimation of External Tendons in PC Bridges Using Vibration Measurement Method (진동 측정법을 이용한 PC교량 외부텐던의 장력 추정)

  • Park, Sung Woo;Jung, Ha Tae;Jung, Soo Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this study, vibrational tendon tension measurement methods are applied to estimate tension of external tendons used in segmental post-tensioned bridges. The acceleration of various length type of tendons is measured and natural frequencies are obtained using FFT (Fast Fourier Transform). The obtained natural frequencies are within 1% error regardless of sensor direction and location. On the basis of natural frequency of tendon, estimation of the tendon tension is performed by using many types of solutions such as string theory equation, multi mode estimation, practical formula estimation and stiff string with clamped-clamped boundary conditions. The results are compared with each other and have shown that the flexural stiffness is not negligible in tendons of this type causing the vibration mode to be inharmonically related. The results have shown that the method using stiff string equation with clamped-clamped boundary conditions is more accurate than the other methods. Application example of in-service bridges has shown that force distribution effects from friction at deviation blocks can be effectively detected.

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.

New Technique for the Reconstruction of Both Anteromedial & Posterolateral Bundles of ACL (전방십자인대의 전내측 다발 및 후외측 다발을 각각 재건하는 새로운 수술 수기)

  • Ha Chul-Won;Awe Soo-Ik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.6 no.2
    • /
    • pp.195-199
    • /
    • 2002
  • This article is to report a new technique for reconstruction of the anteromedial and posterolateral bundles of anterior cruciate ligament by separate tensioning and fixation of the each bundle. Method : Tibial and femoral tunnels were made with conventional technique of anterior cruciate ligament reconstruction. Tibial tunnel was enlarged $5\~7$ mm in anterior-posterior direction to make oval it in cross section. When preparing the Achilles tendon allograft, bone plug portion was trimmed as the conventional technique. The tendinous portion was trimmed as two separate bundles by dividing the tendinous portion longitudinally, so the graft is shaped like 'Y'. The bone plug portion of allograft was inserted into the femoral tunnel and fixed with absorbable cross pins. Two ligamentous portionss of the distal part of the grafts were tensioned separately at the external orifice. Anteromedial bundle was fastened under maximum tension with the knee flexed 90 degrees by post-tie method. The posterolateral bundle was fixed by the same technique with the knee in full extension. Then, an absorbable interference screw was inserted between the two bundles upto the upper end of the tibial tunnel, to get more initial rigidity of the reconstructed graft as well as to locate the two bundles in more anatomic position.

  • PDF

Analysis of Behavior due to Tendon Damage for Maintenance of PSC I Girder Bridge (PSC I 거더교 유지관리를 위한 긴장재 손상에 따른 거동 분석)

  • Jongho Park;Jinwoong Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Prestressed concrete (PSC) bridges are vulnerable to corrosion and fracture of tendons, and in particular, structures using the internal post-tensioned with grouted system have difficulties in maintenance due to limitations of inspection. In this study, the actual behavior of PSC I girder bridge was analyzed according to tendon damage. The target PSC I girder bridge, an decommissioned highway bridge of upper and lower bridges, had the service period of 33 years and 20 years, respectively. Deflection and concrete strain were measured according to the location of damaged tendon and loading method. Regardless of the age of the bridge, its structural performance decreased when the damaged tendon was closer to the center of the girder. The change in behavior increased as the truck load approached to the girder where the tendon cut. If the load was applied to the adjacent girder where the tendon was cut, the structural performance was likely to be maintained due to the influence of the entire structural system. The change in deflection was difficult to observe visually, while the concrete strain exceeded the cracking strain. Therefore, it is recommended that future monitoring and inspection of PSC I girder bridges should focus on concrete strain or cracking.

ACL reconstruction with autologous hamstring tendon - Short term clinical result using new femoral suspensory fixation device 'Cross Pin' and graft tensioner for maintaining a constant tension- (자가 슬괵건을 이용한 전방 십자 인대 재건술 - 새로운 대퇴부 현수고정법인 Cross Pin과 일정한 긴장력 유지를 위한 Graft Tensioner 사용의 단기 추시 결과 -)

  • Seo, Seung-Suk;Kim, Chang-Wan;Kim, Jin-Seok;Choi, Sang-Yeong
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.10 no.1
    • /
    • pp.27-34
    • /
    • 2011
  • Purpose: To evaluate the short term clinical result of ACL reconstruction with autologous hamstring tendon using Cross pin and Graft Tensioner and to seek way to resolve the experienced technical problems. Materials and Methods: From January 2008 to March 2009, 35 patients who had been treated arthroscopic ACL reconstruction were enrolled. The femoral side of ACL graft was fixed with Cross pin. The tibial side of graft was fixed with Intrafix and post-tie. The graft was tensioned with Graft Tensioner at 80N. We analyzed the clinical, radiographic results and complications. Results: IKDC subjective score and Lysholm score improved to 89.1 and 91.4 points. Also, Pivot shift test and One-leg hop test showed good results postoperatively. Side to side difference using KT-1000 arthrometer and Telos stress radiography improved compared with normal limb to $2.8{\pm}1.6$ mm and $2.6{\pm}1.3$ mm, respectively. The femoral tunnel enlarged to $2.3{\pm}1.1$ mm. Soft tissue irritation and femoral tunnel-graft harness length mismatch, femoral tunnel-cross pin tunnel mismatch were happened as peri-operative complications. Conclusion: Using of Cross pin and Graft Tensioner for ACL reconstruction with hamstring tendon is one of the good method for obtaining stability in short-term clinical result. But to reduce femoral tunnel-cross pin mismatch, it needs to shorten femoral bone tunnel and to create cross pin tunnel as vertical as possible. And to reduce femoral tunnel-graft harness mismatch, it needs to advance position rod further 3 mm when to create femoral tunnel.

  • PDF