DOI QR코드

DOI QR Code

Analysis of Behavior due to Tendon Damage for Maintenance of PSC I Girder Bridge

PSC I 거더교 유지관리를 위한 긴장재 손상에 따른 거동 분석

  • 박종호 (한국도로공사 도로교통연구원) ;
  • 최진웅 (한국도로공사 도로교통연구원)
  • Received : 2024.03.18
  • Accepted : 2024.03.24
  • Published : 2024.04.30

Abstract

Prestressed concrete (PSC) bridges are vulnerable to corrosion and fracture of tendons, and in particular, structures using the internal post-tensioned with grouted system have difficulties in maintenance due to limitations of inspection. In this study, the actual behavior of PSC I girder bridge was analyzed according to tendon damage. The target PSC I girder bridge, an decommissioned highway bridge of upper and lower bridges, had the service period of 33 years and 20 years, respectively. Deflection and concrete strain were measured according to the location of damaged tendon and loading method. Regardless of the age of the bridge, its structural performance decreased when the damaged tendon was closer to the center of the girder. The change in behavior increased as the truck load approached to the girder where the tendon cut. If the load was applied to the adjacent girder where the tendon was cut, the structural performance was likely to be maintained due to the influence of the entire structural system. The change in deflection was difficult to observe visually, while the concrete strain exceeded the cracking strain. Therefore, it is recommended that future monitoring and inspection of PSC I girder bridges should focus on concrete strain or cracking.

프리스트레스트 콘크리트(PSC) 교량은 긴장재 부식과 파단에 취약하며, 특히 내부 포스트텐션 형식을 사용하는 구조물은 내부 긴장재 조사의 한계로 유지관리에 어려움이 있다. 따라서 본 연구에서는 고속도로 교량의 약 35%를 차지하는 PSC I 거더교의 트럭 재하 실험을 통하여 긴장재 손상에 따른 실제 거동을 분석하고 유지관리 전략을 제시하고자 하였다. 대상 PSC I 거더교는 고속도로의 폐교량이며, 상·하행교량의 공용기간은 각각 33년, 20년이다. 단부 및 중앙부 등 긴장재 손상 위치와 정적 및 동적, 거더별 하중 재하 방법에 따라 처짐과 콘크리트 변형률을 계측하였다. 교량의 노후화와 관계없이 긴장재 손상이 거더 중앙부에 가까울수록 교량의 구조 성능은 감소하였다. 트럭 하중이 긴장재 절단이 발생한 거더에 근접될수록 거동의 변화가 증가하였다. 긴장재 절단 인접거더에 하중이 재하 될 경우 교량 전체 구조계의 영향으로 구조적 성능은 유지 가능할 것으로 판단된다. 거더 중앙부 긴장재가 절단된 경우 처짐의 변화량은 육안 관찰이 어려운 수준인 반면, 절단 위치의 콘크리트 변형률은 균열발생 변형률을 초과하였다. 따라서 향후 PSC I 거더교의 모니터링 및 유지관리 시에 콘크리트 변형률 또는 균열에 중점을 두는 것이 효율적이라 판단된다.

Keywords

Acknowledgement

본 연구는 한국도로공사 도로교통연구원의 지원에 의해 수행되었습니다.

References

  1. Korea Expressway Corporation Research Institute (2021), Development of Maintenance Plan on PSC Box Girder Bridges, Korea Expressway Corporation Research Institute, Hwaseong, 1-28 (in Korean).
  2. Vereecken, E., Botte, W., Lombaert, G., and Caspeele, R. (2021), Assessment of corroded prestressed and post-tensioned concrete structures: A review, Structural Concrete, Wiley, 22(5), 2556-2580. https://doi.org/10.1002/suco.202100050
  3. Hartt, W., and Lee, S. K. (2016), Projecting Corrosion Induced Bridge Tendon Failure Resulting from Deficient Grout: Part I - Model Development and Example Results, Corrosion, Allen Press, 72(8), 991-998.
  4. Jeon, C. H., Lee, J. B., Lon, S., and Shim, C. S. (2019), Equivalent material model of corroded prestressing steel strand, Journal of Materials Research and Technology, Elsevier, 8(2), 2450-2460. https://doi.org/10.1016/j.jmrt.2019.02.010
  5. Darmawan, M. S., and Stewart, M. G. (2007a), Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders, Structural Safety, Elsevier, 29(1), 16-31. https://doi.org/10.1016/j.strusafe.2005.11.002
  6. Darmawan, M. S., and Stewart, M. G. (2007b), Effect of pitting corrosion on capacity of prestressing wires, Magazine of Concrete Research, ICE, 59(2), 131-139. https://doi.org/10.1680/macr.2007.59.2.131
  7. Li, F., Yuan, Y., and Li, C. Q. (2011), Corrosion propagation of prestressing steel strands in concrete subject to chloride attack, Construction and Building Materials, Elsevier, 25(10), 3878-3885. https://doi.org/10.1016/j.conbuildmat.2011.04.011
  8. Lu, Z. H., Li, F., and Zhao, Y. G. (2016), An Investigation of Degradation of Mechanical Behaviour of Prestressing Strands Subjected to Chloride Attacking, Proceedings of the 5th International Conference on the Durability of Concrete Structures, Purdue University Press, Indiana, 57-65.
  9. Jo, S. D., Kwon, S. H., Lee, Y., and Kim, C. Y. (2017), Statistical Analysis on Corrosion and Estimation of Probability on Fracture for Corroded Strand of a Post-Tensioned Bridge on Service, Journal of the Korea Concrete Institute, 29(6), 545-553 (in Korean).
  10. Vecchi, F., Franceschini, L., Tondolo, F., Belletti, B., Sanchez Montero, J., and Minetola, P. (2021), Corrosion morphology of prestressing steel strands in naturally corroded PC beams, Construction and Building Materials, Elsevier, 296, 123720.
  11. Zhang, W., Li, C., Gu, X., and Zeng, Y. (2019), Variability in cross-sectional areas and tensile properties of corroded prestressing wires, Construction and Building Materials, Elsevier, 228, 116830.
  12. Rashetnia, R. Ghasemzadeh, F., Hallaji, M., Pour-Ghaz, M. (2018), Quantifying prestressing force loss due to corrosion from dynamic structural response, Journal of Sound and Vibration, Elsevier, 443, 129-137.
  13. Kim, G. Y., and Seo, D. W. (2018), Application of Acoustic Emission Technique for Bridge Cable Monitoring, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 121-125 (in Korean).
  14. Coronelli, D., Castel, A., Vu, N. A., and Francois, R. (2009), Corroded post-tensioned beams with bonded tendons and wire failure, Engineering Structures, Elsevier, 31(8), 1687-1697. https://doi.org/10.1016/j.engstruct.2009.02.043
  15. Dai, L., Wang, L., Bian, H., Zhang, J., Zhang, X., and Ma, Y. (2019), Flexural Capacity Prediction of Corroded Prestressed Concrete Beams Incorporating Bond Degradation, Journal of Aerospace Engineering, ASCE, 32(4), 04019027.
  16. Kim, J. T., Park, J. H., Hong, D. S., and Na, W. B. (2008), Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature, KSCE Journal of Civil and Environmental Engineering Research, 28(1A), 135-146 (in Korean).
  17. Gou, T., Chen, Z., Liu, T., and Han, D (2016), Time-dependent reliability of strengthened PSC box-girder bridge using phased and incremental static analyses, Engineering Structures, Elsevier, 117, 358-371. https://doi.org/10.1016/j.engstruct.2016.03.011
  18. Kim, H. J., Ji, S. G., Kim, H. K., Kim, P. S., Jung, J. S., and Lee, M. J. (2018), Evaluation of Tension of PSC Box Girder Bridges Using Risk Matix, Korean Journal of Construction Engineering and Management,19(5), 053-060 (in Korean).
  19. National Academies of Sciences, Engineering, and Medicine (NASEM). (2017), Inspection Guidelines for Bridge Post-Tensioning and Stay Cable Systems Using NDE Methods(NCHRP Research Report), The National Academies Press., Washington, D.C. 1-38.
  20. National Highways (NH). (2020), CS 465 Management of post-tensioned concrete bridges(Design Manual for Roads and Bridges), National Highways, Guildford, 1-39.
  21. Federal Highway Administration (FHWA). (2013), Guidelines for Sampling, Assessing, and Restoring Defective Grout in Prestressed Concrete Bridge Post-Tensioning Ducts, Federal Highway Administration, Washington, D.C., 1-95.
  22. Ministry of Land, Infrastructure and Transport (MOLIT). (2018), Detailed Guidelines for the Safety and Maintenance of Facilities (Part of Safety Inspection and Precise Safety Diagnosis for Bridge), Korea Authority of Land & Infrastructure Safety, Jinju, 1-29 (in Korean).
  23. Federal Highway Administration (FHWA). (2009), Effect of Voids in Grouted Post-Tensioned Concrete Bridge Construction Inspection and Repair Manual for External Tendons in Segmental, Post-Tensioned Bridges, Federal Highway Administration, Washington, D.C., 15.
  24. Korea Expressway Corporation Research Institute(EX). (2018), A Study on Structural Safety Evaluation of Prestressed Concrete Bridges According to Damage of Prestressing Tendons, Korea Expressway Corporation Research Institute, Hwaseong, 1-86 (in Korean).
  25. Choi, J. W., and Kim, K. H. (2019), Behavior Characteristics of PSCI Girder Bridges under Damage of Internal Tendon, Proceedings of the Korea Concrete Institute, Korea Concrete Institute, Seoul, 71-72 (in Korean).