• Title/Summary/Keyword: post-magmatic fluids

Search Result 5, Processing Time 0.017 seconds

The characteristics of zircon as the evidence for post-magmatic remobilization of REE and HFSE in the northern Motzfeldt alkaline igneous complex, southern Greenland

  • Kim, Eui-Jun;Yang, Seok-Jun;No, Sang-Gun;Park, Sung-Won;Lee, Seung Ryeol;Kim, You-Dong;Jo, Jinhee
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.921-938
    • /
    • 2018
  • The Motzfeldt intrusions in the Gardar Province, southern Greenland, split into syenitic plutonic and hypabyssal rocks, in which the latter include ring dykes and sheet intrusions. Sheet intrusions, considered as the source for rare earth elements (REE) and high field strength elements (HFSE), comprise sheets of peralkaline microsyenite (SPM), syenitic pegmatite (SP), and peralkaline microsyenite (PM). SP exhibits extremely high concentrations of REE and HFSE, which are positively correlated with increasing alkalinity from early towards late intrusion, caused by magmatic processes. In contrast, some of the SPM and PM are also significantly enriched in REE and HFSE, caused by post-magmatic fluids. The REE- and HFSE-rich phases in SP consist mainly of zircon and allanite with smaller amounts of pyrochlore in pseudomorph from the inferred eudialyte, whereas some of the PM and SPM consist of pyrochlore, REE-carbonate, and zircon in the matrix. The zircon grains in the Motzfeldt Sø Formation (MSF) syenite occur in interstitial spaces, exhibiting an association with magnetite and a bipyramidal form in texture. They are characterized by a highly fractured and embayed rim. Zircons from PM and SP are clearly enriched in Fe, Al, Ca, Na, Y, P, Hf, Y, P, Nb, Ta, and REE, and are depleted in Zr and Si in comparison with magmatic zircon. They also show a clear trend of higher LREE/HREE and $Eu/Eu^{\star}$ ratios, and lower $Ce/Ce^{\star}$ ratios, which define them as typical hydrothermal zircons. In contrast, zircons from the MSF syenite show a relatively lower LREE/HREE ratio and Eu and Ce anomalies of a similar magnitude compared with those from SP and PM. The occurrence and mineral composition of the zircon suggest that post-magmatic fluids have played an important role in the remobilization of REE and HFSE as well as the primary concentration of REE and HFSE, caused by magmatic processes.

Gas and Solute Compositions of Fluid Inclusions in Quartz from Some Base-metal ore Deposits, South Korea (남한의 주용 금속광상산 석영내의 유체포유물의 가스성분과 용존성분의 화학조성)

  • Kim, Gyu-Han;Jeong, Hae-Ran
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.421-434
    • /
    • 1999
  • Gas and chemical compositions of fluid inclusions in quartz some of Au-Ag, Pb-Zn-Cu and W-Mo mineral deposits in South Kores were analyzed to interpret the sources of ore fluid and the depositional condition of ore minerals in base-metal ore deposits. Fluid inclusions in quartz from the gold and silver mines are characterized by $CO_2$ rich fluids which have a wide range in $CH_4 \;and\; CO_2$ contents ($CH_4/CO_2$=0.001-0.225). The $CO_2$ rich but $CH_4$-poor nature of the fluid reflects the high fo2 condition during the mineral precipitation. The C2H6 is detected in hydrothermal quartz vines in metasedimentary rocks from the Jeonjoo-il, Youngbokari and Taechang mines. The $CH_4 /CO_2$ rations in W-Mo bearing quartz veins range from 0.005 to 0.214, which is similar with those in Au-Ag mines. However, skarn formation stage. Fluid inclusions, A relatively good correlation between Na and Cl contentrations reflects varible salinity in the fluid inclusion, it is suggested that the chemistry of promary magmatic hydrothermal fluids has changed during post-magmatic alteration and/or wall rock alteration processes. The content of gas compositions also depends on the kinds of country rocks, supporting above conclusion.

  • PDF

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications (남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계)

  • Choi, Seon-Gyu;Pak, Sang-Joon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.517-535
    • /
    • 2007
  • Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The Mesozoic hydrothermal system and the metallic mineralization in the Korean Peninsula document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The calculated ${\delta}^{18}O_{H2O}$ values of the ore-forming fluids from the Mesozoic metallic mineral deposits show limited range for the Jurassic ones but variable range for the Late Cretaceous ones. The orogenic mineral deposits were formed at relatively high temperatures and deep-crustal levels. The mineralizing fluids that were responsible for the formation of theses deposits are characterized by the reasonably homogeneous and similar ranges of ${\delta}^{18}O_{H2O}$ values. This implies that the ore-forming fluids were principally derived from spatially associated Jurassic granitoids and related pegmatite. On the contrary, the Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of subvolcanic activity and the distal to transitional condition derived from volcanic environments. The Cu(-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas the polymetallic or the precious-metal deposits are more distal to transitional. On the basis of the overall ${\delta}^{18}O_{H2O}$ values of various ore deposits in these areas, it can be briefed that the ore fluids show very extensive oxygen isotope exchange with country rocks, though the ${\delta}D_{H2O}$ values are relatively homogeneous and similarly restricted.

Geochemical and Petrographical Studies on the Fergusonite Associated with the Nb-Y Mineralization Related to the Alkaline Granite, Kyemyeongsan Formation, Korea (계명산층내 알칼리 화강암 기원의 Nb-Y 광화작용에 수반되는 퍼구소나이트의 지구화학 및 산출특성 연구)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.395-406
    • /
    • 1997
  • Some RE (Zr, Nb, REE) ore deposits are located in the middle part of the Korean peninsula. Geotectonically, the RE ore deposits situated on the Kyemyeongsan Formation of northern margin of the Okcheon geosynclinal belt and in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits distributed in Kyemyeongsan Formation which consists of schist and alkaline granite. The alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nb, Ti-Nb-(U), Nd-Th group minerals. Fergusonite, one of Nb-Y rich REE minerals belonging to the A-B oxides, is most common mineral in the rare metal deposits. The fergusonite bearing rocks may be devided into four types by occurrence features and mineral association, that is, zircon type, allanite vein, feldspar type, and fluorite type. Fergusonites show wide variations in optical properties, due to part of differences in their chemical composition (depending on the types), but also the degree of crystalinity of the individual specimens. Fergusonite metamicts enclosed in biotite are generally surrounded by well developed pleochroic haloes. Usually, fergusonite is accompanied with zircon and other REE-bearing minerals. Petrographical and chemical data are presented for fergusonites which collected different types. $Nb_2O_3$ and $Y_2O_3$ contents range from 48.51 to 53.01 wt.% and 29.18 to 42.02 wt.% respectively. Also, $ThO_2$, (1.83~6.93), $UO_2$, (0.17~2.84), ${\sum}RE_2O_3$ (except to Y) (1.11~8.73), and $TiO_2$, (0.19~1.19 wt.%) contents show variational compositions according to fergusonite types. The ${\sum}RE_2O_3$ of fergusonites are positive relation with $Y_2O_3$ and negative relaton with $ThO_2$ and $({\sum}{RE_2O_3}-{Y_2O_3})$. The $Nb_2O_3$ is sightly negative relation with $Ta_2O_3$. Back-scattered electron microscope images (BEI) of fergusonite show the mineral composition and textural feature is very complicated. The variation of Nb, Th and REE content of fergusonite and the modes of occurrence of mineral, suggests that REE may have been mobilized during the circulation of hydrothermal fluids related to contact metamorphism (metasomatism). The chemical variation of the fergusonites with occurrences and mineral association can be related to metasomatism of alkaline fluid was probably the dominant ore-forming process in Chungju district.

  • PDF