• Title/Summary/Keyword: positive-definite

Search Result 309, Processing Time 0.019 seconds

Unbounded Scalar Operators on Banach Lattices

  • deLaubenfels, Ralph
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.1-19
    • /
    • 1986
  • We show that a (possibly unbounded) linear operator, T, is scalar on the real line (spectral operator of scalar type, with real spectrum) if and only if (iT) generates a uniformly bounded semigroup and $(1-iT)(1+iT)^{-1}$ is scalar on the unit circle. T is scalar on [0, $\infty$) if and only if T generates a uniformly bounded semigroup and $(1+T)^{-1}$ is scalar on [0,1). By analogy with these results, we define $C^0$-scalar, on the real line, or [0. $\infty$), for an unbounded operator. We show that a generator of a positive-definite group is $C^0$-scalar on the real line. and a generator of a completely monotone semigroup is $C^0$-scalar on [0, $\infty$). We give sufficient conditions for a closed operator, T, to generate a positive-definite group: the sequence < $\phi(T^{n}x)$ > $_{n=0}^{\infty}$ must equal the moments of a positive measure on the real line, for sufficiently many positive $\phi$ in $X^{*}$, x in X. If the measures are supported on [0, $\infty$), then T generates a completely monotone semigroup. On a reflexive Banach lattice, these conditions are also necessary, and are equivalent to T being scalar, with positive projection-valued measure. T generates a completely monotone semigroup if and only if T is positive and m-dispersive and generates a bounded holomorphic semigroup.

  • PDF

A NEW CRITERION FOR MOMENT INFINITELY DIVISIBLE WEIGHTED SHIFTS

  • Hong T. T. Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.437-460
    • /
    • 2024
  • In this paper we present the weighted shift operators having the property of moment infinite divisibility. We first review the monotone theory and conditional positive definiteness. Next, we study the infinite divisibility of sequences. A sequence of real numbers γ is said to be infinitely divisible if for any p > 0, the sequence γp = {γpn}n=0 is positive definite. For sequences α = {αn}n=0 of positive real numbers, we consider the weighted shift operators Wα. It is also known that Wα is moment infinitely divisible if and only if the sequences {γn}n=0 and {γn+1}n=0 of Wα are infinitely divisible. Here γ is the moment sequence associated with α. We use conditional positive definiteness to establish a new criterion for moment infinite divisibility of Wα, which only requires infinite divisibility of the sequence {γn}n=0. Finally, we consider some examples and properties of weighted shift operators having the property of (k, 0)-CPD; that is, the moment matrix Mγ(n, k) is CPD for any n ≥ 0.

UNIVERSAL QUADRATIC FORMS OVER POLYNOMIAL RINGS

  • Kim, Myung-Hwan;Wang, Yuanhua;Xu, Fei
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1311-1322
    • /
    • 2008
  • The Fifteen Theorem proved by Conway and Schneeberger is a criterion for positive definite quadratic forms over the rational integer ring to be universal. In this paper, we give a proof of an analogy of the Fifteen Theorem for definite quadratic forms over polynomial rings, which is known as the Four Conjecture proposed by Gerstein.

BOUNDARIES OF THE CONE OF POSITIVE LINEAR MAPS AND ITS SUBCONES IN MATRIX ALGEBRAS

  • Kye, Seung-Hyeok
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.669-677
    • /
    • 1996
  • Let $M_n$ be the $C^*$-algebra of all $n \times n$ matrices over the complex field, and $P[M_m, M_n]$ the convex cone of all positive linear maps from $M_m$ into $M_n$ that is, the maps which send the set of positive semidefinite matrices in $M_m$ into the set of positive semi-definite matrices in $M_n$. The convex structures of $P[M_m, M_n]$ are highly complicated even in low dimensions, and several authors [CL, KK, LW, O, R, S, W]have considered the possibility of decomposition of $P[M_m, M_n] into subcones.

  • PDF

CONSTRUCTION OF POSITIVE INTERPOLATION FUNCTIONS FOR DIFFUSION TENSOR

  • Shim, Hong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.563-570
    • /
    • 2007
  • There has been a considerable research interest in medical communities for neuronal fiber tracking with magnetic resonance diffusion tensor imaging(DTI). DTI data have abundant structural boundaries that need to be preserved during interpolation to facilitate fiber tracking. Sigmoid function has been used in recent papers but the sigmoid function still is not good enough to be served as an positive interpolation in mathematical point of view. In this paper, we construct and provide two families positive cardinal interpolation functions.

A NEW PROOF TO CONSTRUCT MULTIVARIABLE GEOMETRIC MEANS BY SYMMETRIZATION

  • KIM, SEJONG;PETZ, DENES
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.379-386
    • /
    • 2015
  • The original geometric mean of two positive definite operators A and B is given by A#B = A1/2(A-1/2BA-1/2)1/2A1/2. In this article we provide a new proof to construct from the two-variable geometric mean to the multivariable mean via symmetrization introduced by Lawson and Lim [5]. Finally we provide an algorithm to find three-variable geometric mean via symmetrization, which plays an important role to construct higher-order geometric means.

A Study on the Application of Conjugate Gradient Method in Nonlinear Magnetic Field Analysis by FEM. (유한요소법에 의한 비선형 자계 해석에 공액 구배법 적응 연구)

  • 임달호;신흥교
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.22-28
    • /
    • 1990
  • This paper is a study on the reduction of computation time in case of nonlinear magnetic field analysis by finite element method and Newton-Raphson method. For the purpose, the nonlinear convergence equation is computed by the conjugate gradient method which is known to be applicable to symmetric positive definite matrix equations only. As the results, we can not prove mathematically that the system Jacobian is positive definite, but when we applied this method, the diverging case did not occur. And the computation time is reduced by 25-55% and 15-45% in comparison with the case of direct and successive over-relaxation method, respectively. Therefore, we proved the utility of conjugate gradient method.

  • PDF

STOCHASTIC GRADIENT METHODS FOR L2-WASSERSTEIN LEAST SQUARES PROBLEM OF GAUSSIAN MEASURES

  • YUN, SANGWOON;SUN, XIANG;CHOI, JUNG-IL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.162-172
    • /
    • 2021
  • This paper proposes stochastic methods to find an approximate solution for the L2-Wasserstein least squares problem of Gaussian measures. The variable for the problem is in a set of positive definite matrices. The first proposed stochastic method is a type of classical stochastic gradient methods combined with projection and the second one is a type of variance reduced methods with projection. Their global convergence are analyzed by using the framework of proximal stochastic gradient methods. The convergence of the classical stochastic gradient method combined with projection is established by using diminishing learning rate rule in which the learning rate decreases as the epoch increases but that of the variance reduced method with projection can be established by using constant learning rate. The numerical results show that the present algorithms with a proper learning rate outperforms a gradient projection method.