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A NEW PROOF TO CONSTRUCT MULTIVARIABLE

GEOMETRIC MEANS BY SYMMETRIZATION†

SEJONG KIM∗ AND DÉNES PETZ

Abstract. The original geometric mean of two positive definite operators
A and B is given by

A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

In this article we provide a new proof to construct from the two-variable
geometric mean to the multivariable mean via symmetrization introduced
by Lawson and Lim [5]. Finally we provide an algorithm to find three-

variable geometric mean via symmetrization, which plays an important
role to construct higher-order geometric means.
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1. Introduction

As a typical value of a finite number of positive real numbers, average or mean
plays an important role in probability theory, statistics, and economics. For
instance, the arithmetic, geometric, and harmonic means have been commonly
used:

A(x1, . . . , xn) =
1

n

n∑
j=1

xj ,

G(x1, . . . , xn) =

 n∏
j=1

xj

1/n

,

H(x1, . . . , xn) =

 1

n

n∑
j=1

x−1
j

−1

.
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One can construct a definition of means for positive real numbers as following.

Definition 1.1. Let R+ be the set of all positive real numbers. A function
M : Rn

+ → R+ is called a mean of positive real numbers if

(1) M(x, . . . , x) = x for any x ∈ R+;
(2) M(αx1, . . . , αxn) = αM(x1, . . . , xn) for any α ∈ R+;
(3) M(x1, . . . , xn) = M(xσ(1), . . . , xσ(n)) for any permutation σ on {1, . . . , n};
(4) M(x1, . . . , xn) ≤ M(y1, . . . , yn) whenever xj ≤ yj for all j = 1, . . . , n;

and
(5) M is continuous in each variable.

The three of the most familiar means listed above satisfy the axioms of means
and hold the inequality:

H(x1, . . . , xn) ≤ G(x1, . . . , xn) ≤ A(x1, . . . , xn).

This n-variable mean can be naturally defined for positive definite bounded
operators. The arithmetic and harmonic means of positive definite operators
can be defined as the same as those of positive real numbers, but it is not the
case of the geometric mean because of non-commutativity. The purpose of this
paper is to suggest a new method to construct (n+ 1)-variable geometric mean
from n-variable geometric mean.

Let P be the open convex cone of positive definite bounded operators. For
self-adjoint operators X and Y we define X ≤ Y if and only if Y −X is positive
semidefinite, and X < Y if and only if Y −X is positive definite. This relation,
known as the Löewner order, gives a partial order on P.

2. Two-variable geometric mean

The original geometric mean of positive definite operators A and B

A#B := A1/2(A−1/2BA−1/2)1/2A1/2 (1)

was introduced by Kubo and Ando in [4], and its several properties have been
found: see the references [1] and [3]. One can naturally define the weighted
geometric mean of positive definite operators A and B such as

A#tB := A1/2(A−1/2BA−1/2)tA1/2, (2)

where t ∈ [0, 1]. If A and B are not invertible, then we can take

A#tB := lim
ϵ→+0

(A+ ϵI)#t(B + ϵI).

We list some properties of the weighted geometric mean.

Lemma 2.1. Let A,B,C,D ∈ P and let s, t, u ∈ [0, 1]. Then the following are
satisfied.

(1) A#tB = A1−tBt if A and B commute.
(2) (aA)#t(bB) = a1−tbt(A#tB) for any a, b > 0.
(3) A#tB ≤ C#tD whenever A ≤ C and B ≤ D.
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(4) P (A#tB)P † = (PAP †)#t(PBP †) for any invertible operator P .
(5) A#tB = B#1−tA.
(6) (A#tB)−1 = A−1#tB

−1.
(7) (A#sB)#t(A#uB) = A#(1−t)s+tuB.
(8) [(1−λ)A+λB]#s[(1−λ)C+λD] ≥ (1−λ)(A#sC)+λ(B#sD) for any

λ ∈ [0, 1].
(9) [(1− t)A−1 + tB−1]−1 ≤ A#tB ≤ (1− t)A+ tB for any t ∈ [0, 1].

3. A new proof of extension

We now present a new extension of two-variable geometric mean to multi-
variable geometric mean. Let ∆n be a set of all positive probability vectors in
Rn, that is, ω = (w1, . . . , wn) ∈ ∆n means that wj > 0 for all j = 1, . . . , n and
n∑

j=1

wj = 1.

Let A = (A1, . . . , An),B = (B1, . . . , Bn) ∈ Pn and ω = (w1, . . . , wn) ∈ ∆n.
We consider an operator geometric mean G : ∆n × Pn → P satisfying

(G1) G is idempotent : for any A ∈ P
G(ω;A, . . . , A) = A,

(G2) G is jointly homogeneous: for all aj > 0

G(ω; a1A1, . . . , anAn) =

 n∏
j=1

a
wj

j

G(ω;A),

(G3) G is permutation invariant : for any permutation σ on {1, . . . , n}
G(ω;A) = G(ωσ;Aσ),

where Aσ = (Aσ(1), . . . , Aσ(n)),
(G4) G is monotone: if Aj ≤ Bj for all j = 1, . . . , n, then

G(ω;A) ≤ G(ω;B).
For a uniform probability vector ω = (1/n, . . . , 1/n) we simply write G(A) =

G(ω;A).
Lemma 3.1. [6, Proposition 2.5] Let G : ∆n × Pn → P be jointly homogeneous
and monotone. Then the following contractive property for the Thompson metric
is satisfied:

d(G(ω;A), G(ω;B)) ≤
n∑

j=1

wjd(Aj , Bj),

where d(A,B) := ∥ log(A−1/2BA−1/2)∥ for the operator norm ∥ · ∥.
Let A = (A1, . . . , An) ∈ Pn. For convenience, we use the notation

A ̸=j = (A1, . . . , Aj−1, Aj+1, . . . , An) ∈ Pn−1

for any j ∈ {1, . . . , n}.
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Theorem 3.2. Let A = (A1, A2, . . . , An+1) ∈ Pn+1. Assume that the n-variable
geometric mean G satisfying (G1) through (G4) exists. Consider the recursive
sequences

A
(0)
j = Aj , A

(r)
j = G(A(r−1)

̸=n+2−j) (1)

for any j ∈ {1, . . . , n + 1}, where A(r−1) = (A
(r−1)
1 , A

(r−1)
2 , . . . , A

(r−1)
n+1 ) for r =

1, 2, . . .. Then sequences A
(r)
j converge as r → ∞ and their limits equal to G(A).

For an (n + 1)-tuple A of positive definite operators, the jth sequence in
the first construction is made by the operator mean G of the n-tuple obtained
by removing (n + 2 − j)th component of A for any j ∈ {1, . . . , n + 1}. This
construction gives us a new (n+1)-tuple A(1) of positive definite operators. We
continue this process to get the operator means of (n + 1) variables from the
same mean of n variables. The following shows how to construct three-variable
geometric mean via symmetrization process.

Via Section 2 and Section 3 of [5] Lawson and Lim have introduced a way to
extend higher-order means from nonexpansive and coordinatewise contractive
means in a complete metric space X. See [5, Definition 3.7] for coordinatewise
contractivity and [5, Definition 3.11] for nonexpansivity. Note that P is the
complete metric space with respect to the Thompson metric, and the mean G
satisfies the nonexpansive and contractive properties by Lemma 3.1. So the map

β : Pn+1 → Pn+1, β(A) = (G(A ̸=1), . . . , G(A ̸=n+1))

is power convergent, which means that

lim
k→∞

βk(A) = (M, . . . ,M)

for some M ∈ P. Since the mean G is permutation invariant by (G3), our limit
G(A) in Theorem 3.2 is the equal to M (see Remark 2.2 in [5]). While Lawson
and Lim have shown it using (locally) convex hull in the geometric sense (see
Proposition 3.13 in [5]), we provide a different proof of power convergence in this
article.
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Proof. We follow two steps.

Step 1. Assume that A1 ≤ A2 ≤ · · · ≤ An+1. Then by the monotonicity (G4)

A
(1)
1 = G(A1, . . . , An−1, An) ≤ G(A1, . . . , An−1, An+1) = A

(1)
2 ,

so similarly A
(1)
1 ≤ A

(1)
2 ≤ · · · ≤ A

(1)
n+1. Therefore, inductively we have

A
(r)
1 ≤ A

(r)
2 ≤ · · · ≤ A

(r)
n+1

for all r ≥ 1.

Moreover, {A(r)
1 }∞r=0 is increasing. Indeed, by the idempotency (G1)

and the monotonicity (G4)

A
(r−1)
1 = G(A

(r−1)
1 , . . . , A

(r−1)
1 ) ≤ G(A

(r−1)
1 , . . . , A(r−1)

n ) = A
(r)
1 .

Similarly, we can prove that {A(r)
n+1}∞r=0 is decreasing.

So A
(r)
1 and A

(r)
n+1 converge as r → ∞. Say X = lim

r→∞
A

(r)
1 and

Y = lim
r→∞

A
(r)
n+1, respectively. Obviously, X ≤ Y .

By the permutation invariancy (G3) and Lemma 3.1 we have

d(A
(r)
1 , A

(r)
n+1)

= d(G(A
(r−1)
1 , . . . , A(r−1)

n ), G(A
(r−1)
2 , . . . , A

(r−1)
n+1 ))

= d(G(A
(r−1)
1 , A

(r−1)
2 , . . . , A(r−1)

n ), G(A
(r−1)
n+1 , A

(r−1)
2 , . . . , A(r−1)

n ))

≤ 1

n
d(A

(r−1)
1 , A

(r−1)
n+1 ).

Taking the limit as r → ∞ we have

(
1− 1

n

)
d(X,Y ) ≤ 0, or d(X,Y ) =

0. So X = Y , and thus, it implies that

lim
r→∞

A
(r)
1 = · · · = lim

r→∞
A

(r)
n+1.

Step 2. For arbitrary positive definite operators A1, . . . , An+1, there exist posi-
tive constants α1, α2, . . . , αn+1 such that

α1A1 ≤ α2A2 ≤ · · · ≤ αn+1An+1.

Set Â1 = α1A1, Â2 = α2A2, . . ., and Ân+1 = αn+1An+1. By Step 1,

each sequence Â
(r)
j converges as r → ∞ and

lim
r→∞

Â
(r)
1 = · · · = lim

r→∞
Â

(r)
n+1.

On the other hand, for the positive numbers α1, . . . , αn+1, it is easy to

see that the recursion provides convergent sequences α
(r)
1 , . . . , α

(r)
n+1 with

lim
r→∞

α
(r)
1 = · · · = lim

r→∞
α
(r)
n+1 = n+1

√
α1 · · ·αn+1.
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Since Â
(r)
j = α

(r)
j A

(r)
j for all j and all r ≥ 1, we have that A

(r)
j converges

as r → ∞ and

lim
r→∞

A
(r)
j =

1
n+1
√
α1 · · ·αn+1

lim
r→∞

Â
(r)
j .

By the equation (3) we conclude all limits of A
(r)
j are equal.

�

Proposition 3.3. The (n + 1)-variable geometric mean G obtained by the re-
cursive sequence (1) also satisfies the following. Let A = (A1, . . . , An+1) and
B = (B1, . . . , Bn+1) ∈ Pn+1.

(1) (Idempotency) For any A ∈ P

G(A, . . . , A) = A.

(2) (Joint homogeneity) For all aj > 0

G(a1A1, . . . , an+1An+1) =

n+1∏
j=1

aj

 1
n+1

G(A1, . . . , An+1).

(3) (Permutation invariancy) For any permutation σ on {1, . . . , n+ 1}

G(A) = G(Aσ).

(4) (Monotonicity) If Aj ≤ Bj for all j = 1, . . . , n+ 1,

G(A) ≤ G(B).

Proof. These properties can be easily seen from the proof of Theorem 3.2. �

The formula of G(A1, . . . , An+1) is rather complicated, but it is nice with only
two variables. We give an interesting property for G(A1, . . . , An+1) constructed
by only two variables.

Corollary 3.4. Assume that A1 = · · · = Ak = A and Ak+1 = · · · = An = B
for some 1 < k < n+ 1. Then

G(A1, . . . , An+1) = A1/2(A−1/2BA−1/2)tA1/2,

where t =
n− k

n+ 1
.

4. Numerical experiments

We give an algorithm to find three-variable geometric mean constructed by
Theorem 3.2. We consider positive definite matrices instead of positive definite
operators to be able to compute and show two examples using MATLAB.
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Algorithm
Require: Points A0, B0 and C0 which are positive definite

ϵ > 0 which is small enough
m[X,Y ] which is a two-variable mean to be considered
i = 0

Step 1: If max{∥Ai −Bi∥, ∥Bi − Ci∥, ∥Ci −Ai∥} ≥ ϵ, then compute
Ai+1 = m[Ai, Bi], Bi+1 = m[Ai, Ci], and Ci+1 = m[Bi, Ci];

Set i = i+ 1
Continue Step 1

Step 2: If max{∥Ai −Bi∥, ∥Bi − Ci∥, ∥Ci −Ai∥} < ϵ,
then STOP

In this article we are interested in the geometric mean so that we set

m[X,Y ] = X1/2(X−1/2Y X−1/2)1/2X1/2.

Example 4.1. It has been known that any 2× 2 density matrix ρv, which is a
2-by-2 positive semidefinite Hermitian matrix with trace 1, can be parameterized
by a Bloch vector v in the unit ball of R3. Here,

ρv =
1

2

(
1 + v3 v1 − iv2
v1 + iv2 1− v3

)
, v =

 v1
v2
v3

 ∈ R3.

Moreover, the 2× 2 invertible density matrix described by a Bloch vector in the
open unit ball B of R3 plays an important role in quantum information theory.
We give an example of three-variable geometric mean of 2× 2 invertible density
matrices.

Let ρu, ρv, and ρw be 2× 2 density matrices parameterized by

u =

 3/13
4/13
0

 , v =

 3/13
0

4/13

 , w =

 0
3/13
4/13

 .

Set ϵ = 10−4. Then by the 12th iteration we obtain

G(ρu, ρv, ρw) ≈
(

0.5857 0.0746− 0.0871i
0.0746 + 0.0871i 0.3861

)
.

On the other hand, A. Ungar has shown in [7, Theorem 6.93] that the gyrocen-
troid of Bloch vectors u, v, and w in B are given by

C(u,v,w) =
γuu+ γvv + γww

γu + γv + γw
,

where γv =
1√

1− ∥v∥2
is the Lorentz factor. In this example we have C(u,v,w) =

u+ v +w

3
since ∥u∥ = ∥v∥ = ∥w∥, and so

ρC ≈
(

0.6026 0.0769− 0.0897i
0.0769 + 0.0897i 0.3974

)
.
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We easily check that

1

trG(ρu, ρv, ρw)
G(ρu, ρv, ρw) ≈

(
0.6027 0.0768− 0.0897i

0.0768 + 0.0897i 0.3973

)
̸= ρC .

Example 4.2. Let A =

(
1 0
0 1

)
, B =

(
1 2
2 5

)
, C =

(
1 3
3 10

)
. These

are positive definite matrices whose determinants are all 1. In this case we
can use the following formula of two-variable geometric mean for 2× 2 positive
definite matrices A and B whose determinants are 1 (see [1, Proposition 4.1.12]):

A#B =
A+B√

det(A+B)
.

This may reduce computing time because the geometric mean is calculated by
matrix sum instead of matrix power and multiplication. Set ϵ = 10−5. Then by
the 20th iteration we obtain

G(A,B,C) ≈
(

0.63770 1.10936
1.10936 3.49801

)
,

and we can easily verify that G(A,B,C) also has determinant 1.
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