• Title/Summary/Keyword: position correction

Search Result 646, Processing Time 0.028 seconds

The correction of clean robot position error (청소 로봇의 위치오차 보정)

  • Yun, Dong-Woo;Oh, Sung-Nam;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.533-535
    • /
    • 2006
  • Cleaning robot that is selling in present city has various cleaning algorithm. However, error of most products happens on progress direction by small obstacle that do not properly and miss cleaning thereby happens. There is robot that correct own position, but is hard to use in general home because economical strain is very big because is high price product very. In this paper measures angular velocity of robot using deviation sensor, and do to correct error using turning angular velocity and vertical angular velocity. Because detailed cleaning such as high pice style is available without addition of expensive hardware in middle and low price style cleaning product thereby, can possess price competitive power.

  • PDF

A Study on Exposure Technics in Roentgenography of the Stomach (위조영촬영시(胃造影撮影時) 촬영조건(撮影條件)에 관(關)한 연구(硏究))

  • Kyong, Kwang-Hyon;Kim, Heung-Tai;Kwon, Dal-Kwan;Sun, Han-Kyung;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.45-53
    • /
    • 1981
  • In examinations of the stomach roentgenography, it is imperative to obtain adequate film density throughout all its different regions. Therefore, it is necessary to use more sophiscated exposure techniques. In order to achieve these purpose, the radiologic technologists must be measured abdominal thickness in variations with patient positions. In consideration of these problem, the author was made an experiment on correction method of kVp and mAs by abdominal thickness in roentgenography of the stomach. The results were summarized as follws: 1. When the patient in erect position, abdominal thickness was the most thickened at the level of 3cm inferior to umbilicus without regard to body habitus and it was the most thickened at the level of 3cm superior to umbilicus in prone and supine position. 2. As a result of measuring film density for stomach, the adequate film density was represented from 0.70 to 2.49 in erect position and $0.28{\sim}1.18$ in supine position, $0.5{\sim}2.45$ in prone position. 3. In order to obtain uniform film density in 1.25, the correction factor for kVp by abdominal thickness was represented average ${\pm}4.5kVp\;per\;{\pm}1cm$ in a fixed 50 mAs, and average ${\pm}3.9kVp\;per\;{\pm}1cm$ in a fixed 100mAs. 4. In order to obtain uniform film density in 1.25, the correction factor for mAs by abdominal thickness was represented average ${\pm}30.9%\;per\;{\pm}1cm$ in a fixed 80 kvp and ${\pm}26.9%\;per\;{\pm}1cm$ in a fixed 100kVp.

  • PDF

Evaluation of measuring accuracy of body position sensor device for posture correction (자세교정을 위한 체위변환 감지 센서 디바이스의 정확성 평가)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Kang, Min-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.128-133
    • /
    • 2021
  • Recently Recently, the incidence of spinal diseases due to poor posture among students and office workers is increasing, and various studies have been conducted to help maintain correct posture. In previous studies, a membrane sensor or a pressure sensor was placed on the seat cushion to see the weight bias, or a sensor that restrained the user was attached to measure the position change. In our previous study, we developed a sensor device which can be easily attached to the body with an adhesive gel sheet and that measures and outputs the user's posture and body position in real time, but it has a limitation in the accuracy of the sensor value. In this study, a study was conducted to improve the performance of the position conversion sensor device and quantitatively evaluate the accuracy of the angle conversion measurement value, and a high accuracy with 2.53% of error rate was confirmed. In future research, it is considered that additional research targeting actual users is needed by diversifying posture correction training contents with multimedia elements added.

Residual error selecting method for precise geometric correction

  • Kim, Myoung-Sun;Ohno, Yasuo;Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.3-7
    • /
    • 1999
  • The images of the meteorological satellite NOAA contain geometrical distortions caused by its ambiguous position, its vibration, its sensor's movement, and so on. Geometric correction of satellite images is one of the most important parts in many remote sensing as the primary processing. Ground control points (GCP's) are necessary to check the accuracy of geometric correction and used for precise geometric correction. In this paper, a method for automatically selecting the residual error is presented. Calculating the effective angle and residual errors vector using the succeeded matching GCP's, precise geometric correction using an affine transformation is applied to systematically a corrected image. And the error is decreased by an affine transformation. The above enable the geometric correction of high quality.

  • PDF

Development of Auto-Correction Monitoring System for Stud Bolts (스터드 볼트 자동 교정 통합 모니터링 시스템에 관한 연구)

  • Yun, Sung-Un;Kim, Jae-Yeol;Kang, Hyung-Seon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.130-134
    • /
    • 2015
  • The automobile industry is ubiquitous and involved in the handling of metal, machines, electricity, electron, and chemistry including the products of many types of processes. In the process of installing engines as a part of the car assembly line, the measurement and correction of the position of the stud bolts consumes a great deal of time. Additionally, defective parts must be manually removed. In the process of engine installation, the speed of the operation, related to the economics of vehicle assembly, is dependent upon measuring the precise position of the stud bolt, reducing the length of correction time, and increasing the working rate. This paper deals with securing the economic feasibility of the manufacturing process, increasing the safety by removing risk factors in the working area, and improving and equalizing the quality by developing an automatic system for the process involving a stud bolt.

The Effective Error Correction Method of a Camera in Monitor-based Augmented Reality Systems (모니터 기반 Augmented Reality 시스템에서 카메라 오차의 효율적인 보정 방법)

  • Kim, Juwan;Kim, Haedong;Jang, Byungtae;Kim, Donghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • In monitor-based AR(Augmented Reality) systems, it is required to know the position and direction of a camera in order to combine real images from a camera with virtual images exactly_ Because a tracker is parted from a camera, however, there is a registration error caused by the inconsistency of a tracker with a camera. In this paper, we describe the error correction method using genetic algorithm. This method looks for the position and direction of a camera using genetic algorithm and solves the error correction matrix of it. And then it is registered of the real images and the revised virtual image. It has an effect on the error correction caused by the misalignment of a tracker with a camera in complex AR systems.

  • PDF

A Study on Computerization of the Sight Reduction (천측계산의 전산화에 관한 연구)

  • 윤여정
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.1
    • /
    • pp.27-43
    • /
    • 1988
  • The tedious work, connected to the altitude correction, the computation of altitudes and aximuths and the plotting of the position lines, has been a objection to celestial position fixing method. But using a computer , the severe objection will be practically overruled. The author had already studied on computerization of the sight reduction partially. This paper is to confirm reliability of coordinate of the moon and the navigational planet calculated by computer programming and to suggest a method of calculating ship's position fixed by two position lines.

  • PDF

Development of Real Time Control System of EMD Bracket in Plate Rolling Process (후판 압연 공정에서 Edge Masking Device의 실시간 제어기술 개발)

  • 최일섭;박병현;최승갑
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.170-170
    • /
    • 2000
  • This paper deals with on-Line detection of strip movement and real time positioning of brackets of EMD connected with it. Strip movement is detected by 4 line CCD camera and measured position correction value is inputted to motor position controller to control position of brackets.

  • PDF

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

Calibration Technology for Precise Alignment of Large Flat Panel Displays (대형 평판 디스플레이의 정밀 정렬을 위한 캘리브레이션 기술)

  • Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.100-109
    • /
    • 2022
  • In this study, calibration technology that increases the alignment accuracy in large flexible flat panels was studied. For precise of calibration, a systematization of the calibration algorithm was established, and a calibration correction technique was studied to revise calibration errors. A coordinate systems of camera and UVW stage was established to get the global position of the mark, and equations for translational and rotational calibration were systematically derived based on geometrical analysis. Correction process for the calibration data was carried, and alignment experiments were performed sequentially in cases of the presence or absence of calibration-correction. Alignment results of both calibration correction and non-calibration correction showed accuracy performance less than 1㎛. On the other hand, the standard deviation in calibration-correction is smaller than non-calibration correction. Therefore, calibration correction showed improvement of the alignment repeatability.