• Title/Summary/Keyword: position controller

Search Result 1,819, Processing Time 0.029 seconds

Precise Position Synchronous Control of Two-Axes System Using Two-Degree-of-Freedom PI Controller in BLDC Motor (2자유도 PI 제어기를 이용한 2축 BLDC 모터 시스템의 정밀 위치동기 제어)

  • Yoo, S.K.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.104-113
    • /
    • 2001
  • This paper describes a precise position synchronous control of two axes rotating system using BLDC motors and a cooperative control based on decoupling technique and PI control law. The system is required performances both good speed following and minimum position synchronous errors simultaneously. To accomplish these goals, the three kinds of controllers are designed. At first, the current and speed controller are designed very simply to compensate the influences of disturbances and to follow up speed references quickly. Especially, the two degree of freedom PI controller is used considering both good tracking for speed reference input and quick rejection of disturbances in speed controller. Finally, a position synchronous controller is designed as a simple proportional controller to minimize position synchronous errors. The validity of the proposed method is confirmed through some numerical simulations. Moreover, the results are compared to the conventional master-slave control ones to show the effectiveness of the proposed system.

  • PDF

Tracking control for multi-axis system using two-degrees-of-freedom controller

  • Park, Ho-Joon;Lee, Je-Hee;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.380-384
    • /
    • 1996
  • This paper represents an adaptive position controller with the disturbance observer for multi-axis servo system. The overall control system consists of three parts : the position controller, the disturbance observer with free parameters and cross-coupled controller which enhances contouring performance by reducing errors. Using two-degrees-of freedom conception, we design the command input response and the closed loop characteristics independently. The servo system can improve the closed loop characteristics without affecting the command input response. The characteristics of the closed loop system is improved by suppressing disturbance torque effectively with the disturbance observer. Moreover, the cross-coupled controller enhances tracking performance. Thus total position control performance is improved. Finally, the performance of the proposed controller shows that it improves the contouring performance along with the reference trajectory in the XY-table.

  • PDF

Development of FPGA-based One-chip Position Controller with PCI Interface

  • Han, Sang-Gyu;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.36.4-36
    • /
    • 2002
  • $\textbullet$ A FPGA-based One-chip position controller with the PCI interface was developed. $\textbullet$ The peripherals of the existent controller can be implemented in one FPGA device. $\textbullet$ For this purpose, the high capacity FPGA device was used. $\textbullet$ PCI controller was merged into the position controller by using the PCI controller of core form. $\textbullet$ The developed position controller used only one FPGA device to achieve the required function. $\textbullet$ By doing this, the overall system can be simplified. $\textbullet$ The noise and power dissipation problems can be minimized and it has the advantage in the price.

  • PDF

Position Control of a Hydraulic System Subjected to Disturbances Using a Variable Structure Controller (가변구조제어기를 이용한 외란을 받는 유압시스템의 위치제어)

  • 박근석;김형의
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.915-921
    • /
    • 2004
  • In this paper, a variable structure controller(VSC) is used to control the position of the hydraulic servo system subjected to unknown disturbances. The system consists of two cylinders, which connected in series. One cylinder executes position control, the other executes force control to generate disturbances. In order to control each cylinder, interaction must be considered between two cylinders because two cylinders are connected in series. Therefore, the controller is designed regarding interaction between two cylinders as disturbances. Performance of the proposed controller was verified through experiments and compared to PID controller. The experiments showed that the proposed controller had a good performance and robustness.

The Design of Neural Networks Controller for Position Control of Flexible Robot Link (유연성 로봇 링크의 위치제어를 위한 신경망 제어기의 설계)

  • 탁한호;이주원;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.121-124
    • /
    • 1997
  • In this paper, applications of self-recurrent neural networks based of adaptive controller to position control of flexible robot link are considered. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. Therefore, a comparative analysis was mode with linear controller through an simulation. The results are presented to illustrate the advantages and improved performance of the proposed position tracking controller over the conventional linear controller.

  • PDF

Balancing and Position Control of an Circular Inverted Pendulum System Using Self-Learning Fuzzy Controller (자기학습 퍼지제어기를 이용한 원형 역진자 시스템의 안정화 및 위치 제어)

  • 김용태;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.172-175
    • /
    • 1996
  • In the paper is proposed a hierarchical self-learning fuzzy controller for balancing and position control of an circular inverted pendulum system. To stabilize the pendulum at a specified position, the hierarchical fuzzy controller consists of a supervisory controller, a self-learning fuzzy controller, and a forced disturbance generator. Simulation example shows the effectiveness of the proposed method.

  • PDF

Synchronous Position Controller Design of Hydraulic Cylinders for a Sluice Gate Using Fuzzy PI (퍼지 PI를 이용한 배수갑문용 유압실린더의 위치 및 동기 제어기 설계)

  • Choi, Byung-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.117-120
    • /
    • 2014
  • In general a main technology of control a sluice gate is accurate synchronous position control for the two cylinders when they are moving with the sluice gate together over 10[m]. Because the nonlinear friction and the unconstant supply flow. Cylinders' displacement will be different. In this case the sluice gate may be deformed and abraded, and even the sluice gate may unable to work. In order to design the controller for this system, we designed two kinds of Fuzzy PI controllers. Fuzzy PI position controller and Fuzzy PI synchronous controller have been designed. We show some simulation results for its availability.

A Method of a Nonlinear Position Control of a Pneumatic Cylinder (비선형특성 보상에 의한 공기압 실린더의 위치제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2000
  • A method for the position control of a pneumatic cylinder using a linearized controller is proposed. Pneumatic cylinder has highly nonlinear characteristics and modelling of the system has been difficult. Compliance of the pneumatic cylinder is materially changed according to the operating position. So, in the case that fixed gain controller obtained by a linearized model at a specified position is used, response of the cylinder should be changed according to the operating position. In order to get a designed results regardless of operating positions, a controller for compensation of the nonlinear characteristic with a linearlization compensator is designed and simulation results show that this method is appropriate for the control object.

  • PDF

Implementation of the High Performance Unified PID Position Controller for Linear Motor Drive with Easy Gain Ajustment Part I - Feature of the Unified PID Position Controller (이득 설계가 간단한 선형전동기 구동용 고성능 통합 PID 위치제어기 구현 제1부: 통합 PID 위치제어기 특성)

  • Kim, Jun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.187-194
    • /
    • 2002
  • Recently, the application of the linear machine far industrial field is remarkable increased, especially for the gantry machine, machine tool system and CNC. In these application fields, high dynamics position control performance Is essentially required in both the steady and the transient state. This pacer presents simple but powerful position control loop based on traditional PID controller. The presented position control algorithm, named 'Unified PID Position Controller'has great features for the linear machine drives such as no over-shoot phenomena and simple gain tuning strategy. Through the experimental results with commercial linear motors, it is shown that the proposed algorithm has excellent dynamics suitable fur linear motions.

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.