• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.033 seconds

Development of center position control system for travelling machines using image processing (영상인식을 이용한 이동기기 정 중심확인 시스템 개발)

  • 최일섭;전종학
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1484-1487
    • /
    • 1996
  • An Automatic coking control system was developed to achieved substantial energy and labor savings through the stabilization and optimization of coke oven operation. With the aim of saving energy and labor, the coke department has been advanced automation and systematization. A typical examples of automation is Center Position Control System(CPCS) for coke oven. This system is proved effective in improvement of center position accuracy.

  • PDF

Anti-swing and position control of crane using fuzzy controller (퍼지제어기를 이용한 크레인의 진동억제 및 위치제어)

  • Jeong, Seung-Hyun;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.435-442
    • /
    • 1997
  • The roof crane system is used for transporting a variable load to a target position. The goal of crane control system is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid tansportation is required. In this paper, we developed a simple fuzzy controller which has been introduced expert's knowledge base for anti-swing and rapid tranportation to goal position. In particular, we proposed the synthesis reasoning method which synthesizes on the basis of expert knowledge of the angle control input and position control input which are inferenced parallel and simultaneously. And we confirmed that the performance of the developed controller is effective as a result of applying it to crane simulator and also verified whether the proposed synthesis rules have been applied correctly using clustering algorithm from the measured data.

  • PDF

Position control of an ER valve bridge-cylinder system via neural network (신경제어기법을 이용한 ER 밸브 브리지-실린더 시스템의 위치제어)

  • 최우연;최승복;정재천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1441-1444
    • /
    • 1996
  • This paper presents the position control of a double-rod cylinder system activated by an electrotheological(ER) valve unit. Following the composition of a silicone oil-based ER fluid, theological properties of the ER fluid are experimentally tested as a function of imposed electric fields to determine appropriate design parameters of the ER valve. The ER valves are then designed and manufactured. Subsequently, the pressure drop of the ER valve is evaluated with respect to the intensity of the electric field. Four ER valves bridge-cylinder system is formulated, and the governing equations for the system are derived. A neural network control scheme is then synthesized to perform the position control of the cylinder system. Tracking control responses are experimentally evaluated and presented in order to demonstrate the effectiveness of the proposed control system.

  • PDF

Controller Design of BLDC Motor Fin Position Servo System by Employing H-infinity Loop Shaping Method (H-infinity Loop Shaping 방법을 이용한 BLDC 전동기 핀 위치제어시스템 제어기 설계)

  • Zhu, He-Lin;Mok, Hyung-Soo;Lee, Hyeong-Geun;Han, Soo-Hee;Seo, Hyeon-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2019
  • This study proposes a robust control of a fin position servo system using the H-infinity loop-shaping method. The fin position control system has a proportional (P) position controller and a proportional-integral (PI) controller. In this work, the position control loop requires a wide bandwidth. No current control loop exists due to the compact design of the system. Hence, the controller parameters are difficult to determine using the traditional cascade design method. The $H_{\infty}$ controller design method is used to design the controller's gain to achieve good performance and robustness. First, the transfer function of the system, which can be divided into tunable and fixed parts, is derived. The tunable part includes the position P controller and speed PI controller. The fixed part includes the rest of the system. Second, the optimized controller parameters are calculated using Matlab $H_{\infty}$ controller design program. Finally, the system with optimized controller is tested by simulation and experiment. The control performance is satisfactory, and the $H_{\infty}$ controller design method is proven to be valid.

Position Control Scheme of Rail Traction System Based on the BLAC Motor With Disturbance Observer (외란 관측기 기반의 BLAC 전동기로 구동하는 레일 트랙션 시스템의 위치 제어)

  • Cho, Kiwan;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • This study presents an overhang-type rail traction system using dual brushless AC (BLAC) motors with hall sensors. For an accurate position and moving length control of the designed rail traction system, instantaneous position controller using speed reference model and modified disturbance observer for BLAC motor with hall sensor are proposed. The presented speed reference model is designed to satisfy the required performance of 200 mm/s with proper acceleration and deceleration slopes to reduce mechanical vibration. Through the instantaneous speed reference model, instantaneous position and speed errors can be compensated together. Furthermore, the modified disturbance observer for BLAC motors with low-resolution hall sensors can improve the torque and speed control performance. The proposed disturbance observer is based on an actual motor speed. However, the feedback speed information of the hall sensor is not enough for use in the low-speed region. The practical adopted disturbance observer uses an activation speed band to the actual torque controller of the designed rail traction system. The proposed position control scheme is verified by the MATLAB-Simulink model and a practical manufactured traction system. In the computer simulation and experiments, the proposed position control scheme shows advanced control performance.

The Position Control of DC Servo System by the Pole Placement (극배치법에 의한 직류 서어보 시스템의 위치 제어)

  • 서기영;고태언
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.4
    • /
    • pp.34-41
    • /
    • 1993
  • The dc servo motor has been often used as the driver for a position control system, because the performance of the control is excellent on the speed and position control. When the unknown disturbance and/or the varying quantity of load is imposed on the position control system, the response of the system has the steady and/or the transient state error.The objective of this work is to demonstrate the principles, design methodologies and implementation of a servo controller for reducing the error in the position control system using the dc servo motor. The coefficients of a servo controller are computed by the pole placement.

  • PDF

The Design, Fabrication, and Characteristic Experiment for Control Rod Position Indicator Using Reed Switch in System-Integrated Modular Advanced Reactor (리드스위치를 이용한 일체형원자로용 제어봉 위치지시기 설계 제작 및 특성해석)

  • Hur, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.452-461
    • /
    • 2003
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indicator system and its actual implementation in the existing nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indicator. The hysteresis of reed switches is one of the important factors in a repeat accuracy of control rod position indicator as well. This paper investigates efficiency of the magnetic flux concentrator and the hysteresis using FEM and verified differences in physicals characteristics by comparing the results of FEM and those of the experiment. As a result, it is shown that the characteristics of prototype control rod position indicator have a good agreement with the results of FEM.

Design of the PD Controller in the I-PD Control System for Position Control (위치제어를 위한 I-PD제어계에서 PD제어기의 설계)

  • Kim, Sung-Dae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.262-266
    • /
    • 2009
  • Since high speed and precision control shoud be satisfied in the position control system, the DC servo motor with easy control and satisfactory response characteristic is used. The various studies of position control techniques have been proposed in order to improve the control performance in the position control system. In this paper, the design method for a position control is suggested for constructing the PD controller in I-PD control system. The coefficients of PD controller in the I-PD control system are determined by using the transfer function which is normalized. Stability and root conditions of the system are derived from mathematical technique. From the result of computer simulation in I-PD control system by applying this control technique, is investigated by the method of proposed design the effectiveness of system response characteristic for input and disturbance.

  • PDF

A PI-PD Controller Design for the Position Control of a Motor (전동기 위치 제어를 위한 PI-PD 제어기 설계)

  • Jang, Ju-Hyeong;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.60-66
    • /
    • 2017
  • This paper presents the design of a proportional-integral (PI)-proportional-derivative (PD) position controller without using a speed controller in motor drive systems. Unlike the existing PI-PD position controller design methods, the proposed controller is designed by reducing the entire position control system to a second-order transfer function. Thus, the gain values for the PI-PD position controller can be determined easily by a given bandwidth of the position controller. The PI-PD position controller designed by the proposed method is adopted for position control in an interior permanent magnet synchronous motor drive system to confirm the validity of the proposed design method. The effectiveness of the proposed design method is confirmed through experiments.

Position Control of a Hydraulic System Subjected to Disturbances Using a Variable Structure Controller (가변구조제어기를 이용한 외란을 받는 유압시스템의 위치제어)

  • 박근석;김형의
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.915-921
    • /
    • 2004
  • In this paper, a variable structure controller(VSC) is used to control the position of the hydraulic servo system subjected to unknown disturbances. The system consists of two cylinders, which connected in series. One cylinder executes position control, the other executes force control to generate disturbances. In order to control each cylinder, interaction must be considered between two cylinders because two cylinders are connected in series. Therefore, the controller is designed regarding interaction between two cylinders as disturbances. Performance of the proposed controller was verified through experiments and compared to PID controller. The experiments showed that the proposed controller had a good performance and robustness.