• Title/Summary/Keyword: position control loop

Search Result 396, Processing Time 0.025 seconds

Practical Issues of Mobile Haptic Interface and Their Improvements (이동형 햅틱 장치의 실제적 문제점과 그 향상 방안)

  • Lee, In;Hwang, In-Wook;Han, Kyung-Lyoung;Choi, Oh-Kyu;Lee, Jin S.;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.390-395
    • /
    • 2009
  • In this paper, we present practical issues in a Mobile Haptic Interface (MHI) and their improvements. The improvements can be categorized in three parts: 1) high-accuracy estimation of the world position of the haptic interface point, 2) motion planning algorithm to move the mobile base while avoiding collisions with the user and other objects, and 3) closed-loop force control to compensate the undesired effect of mobile base dynamics on the final rendering force perceived by the user.

  • PDF

Image-Based Robust Output Feedback Control of Robot Manipulators using High-Gain Observer (고이득 관측기를 이용한 영상기반 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Jeon, Yeong-Beom;Jang, Ki-Dong;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.731-737
    • /
    • 2013
  • In this paper, we propose an image-based output feedback robust controller of robot manipulators which have bounded parametric uncertainty. The proposed controller contains an integral action and high-gain observer in order to improve steady state error of joint position and performance deterioration due to measurement errors of joint velocity. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulations on a 5-link robot manipulators with two degrees of freedom.

Optimal motion control for robot manipulators

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.179-184
    • /
    • 1993
  • In this paper, an optimal motion control scheme is proposed for robot manipulators. A simple explicit solution to the Hamilton-Jacobi equation is presented. The optimization of motion control is based on the mininization of the torque term affecting the kinetic energy and the augmented error which has the first-order stable dynamics for the position and velocity tracking error. In the presence of parametric uncertainty, an adaptive control scheme using the optimal principle is proposed. The global stability of the closed-loop system is guaranteed by the Lyapunov stability approach, The effectiveness and feasibility of the proposed control schemes are shown by simulation results.

  • PDF

A Real-time Distributed AGC System for a Hot Strip Mill (실시간 분산 열연 두께제어 시스템의 설계 및 현장적용)

  • Lee, Ho-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.922-930
    • /
    • 1999
  • This paper describes a new 14-CPU real-time distributed automatic gauge control (AGC) system for POSCO's No. 2 Hot Strip Mill at Pohang Works. The new AGC system has adopted gaugemeter AGC, Monitor AGC, and roll gap disturbance compensators. The computer system for the new AGC system has been developed based on VMEbus computer systems and a commercial real-time operating system. A VMEbus computer system is also used for the position servo control of hydraulic cylinders. All the application programs and input/output signals have been reasonably distributed over the control computer systems for the maximum reliability and effectiveness of the system. The new AGC system has been successfully used for the No. 2 Hot Strip Mill.

Design and Experiment of a miniature 413-way proportional valve for a servo-pneumatic robot hand (공압구동식 로봇손을 위한 소형 4/3-Way 비례제어밸브의 설계 및 실험)

  • 류시복;김상만;홍예선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.331-336
    • /
    • 1995
  • In this past decade, industrial robot have substituted human workers successfully in certain areas, however, the applications are limited due to the shortcoming in their mechanism and control strategies. Many researchers, therefore, have focused on improving the mechanical and sensory capabilities. Developing mult-degree-of-freedom end effectors, in other words robot hands, is one of the topics that researchers have begun to improve the limitation. A set of direct drive type servo-pneumatic finger joint has been developed for a dexterous robot hand. To control the pneumatic finger joints, a prototype 4/3-way proportional control valve has been designed and tested as a preliminary, research for the control of the pneumatic finger joints. A series of experiments have been conducted to verify the performance characteristics of the valve and the conventional proportional error contral with minor-loop compensation has been used to control the anguar position of the finger joints.

  • PDF

Output Feedback LQ control of a Space Robot in Discrete-Time (우주로봇의 이산시간 출력 귀환 LQ 제어)

  • 임승철
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.567-574
    • /
    • 1996
  • This paper concerns an articulated space robot with flexible links. The equations of its motion are derived by means of the Lagrangian mechanics. Assuming that magnitude of elastic motions are relatively small, the perturbation approach is taken to separate the original equations of motion into linear and nonlinear equations. Th effect the desired payload motion, open loop control inputs are first determined based on the nonlinear equations. One the other hand, in order to reduce the positional errors during the maneuver, vibration suppression is actively done with a feedforward control for disturbance cancellation to some extent. Additionally, for performance robustness against residual disturbance, an LQ control modified to have a prescribed degree of stability is applied based on the linear equations. Measurement equations are formulated to be used for the maximum likelihood estimator to reconstruct states from the original robot equations of motion. Finally, numerical simulations show effectiveness of the proposed control design scheme.

  • PDF

Design of a Two-Dimensional Proportional Solenoid for Miniature Directional Control Pneumatic Valves

  • Hong, Yeh-Sun;Ha, Dong-Hyun;Yeom, Myung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.978-985
    • /
    • 2003
  • In this paper, a new proportional solenoid invented for pneumatic directional control valves is introduced. The new proportional solenoid has two-dimensional structure and a pivoting armature on which the friction force is inherently negligible. Another advantageous feature of this solenoid is that its mechanical parts can be easily manufactured and assembled. The working principle and design example of the now proportional solenoid, its application to the activation of a 4/3-way directional control valve, and the evaluation of its control performance in a position control loop are reported.

Simple Adaptive Position Control of a Hydraulic Cylinder-load System Driven by a Proportional Directional Control Valve (비례 방향제어 밸브에 의하여 구동되는 유압실린더-부하계의 단순 적응 위치제어)

  • Cho, Seung-Ho;Lee, Min-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.936-941
    • /
    • 2011
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained and used for controller design. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

Novel MRAS Based Sensorless Speed Control of Induction Motor (새로운 MRAS에 의한 유도전동기의 센서리스 속도제어)

  • 김덕기;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.102-109
    • /
    • 2000
  • In this industrial induction motor speed and torque controlled drive system, the closed loop control usually requires the measurement of speed or position of amotor. However a sensorless drive of an induction motor has several advantages ; low cost and mechanical simplicity. Thus this paper investigates a field oriented control method without speed and flux sensors. The proposed control strategy is based on the Model Reference Adaptive System(MRAS) using a new flux estimator which replaces integrators with two lag circuits as the reference model. This algorithm may overcome several shortages of conventional MRAS such as integrator problems, small EMF at low speed. The simulation and experimental results indicate good speed responses.

  • PDF