• Title/Summary/Keyword: position and orientation

Search Result 739, Processing Time 0.033 seconds

Automated Assembly Modeling using Kinematics Constraints (기구학적 구속조건을 이용한 자동 조립 모델링)

  • Kim Jae Seong;Kim Gwang Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.272-279
    • /
    • 2002
  • A common task in assembly modeling is the determination of the position and orientation of a set of components by solving the spatial relationships between them. Assembly models could be constructed at various levels of abstraction. They could be classified into component or geometry-level assembly models. The geometry-level assembly design approach using mating constraints such as against and fits is widely used in the commercial modelers, but it may be very tedious in some cases fur designer. In this paper, we propose a new method to construct an assembly model at the component-level by extracting joint mating features from the kinematics constraints specified between components. The assembly model constructed using the proposed method includes hierarchical and relational assembly models, component/sub-assembly positions and degrees of freedom information. The proposed method is more intuitive and natural way of assembly design and it guarantees the topological robustness of assembly modification such as component replacement and modification.

  • PDF

Visual Servoing of Robot Manipulators using the Neural Network with Optimal structure (최적구조의 신경회로망을 이용한 로붓 매니퓰레이터의 비주얼 서보잉)

  • Kim, Dae-Joon;Lee, Dong-Wook;Chun, Hyo-Byong;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1269-1271
    • /
    • 1996
  • This paper presents a visual servoing combined by evolutionary algorithms and neural network for a robotic manipulators to control position and orientation of the end-effector. Using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we generate the control input to agree the target image, to realize the visual servoing. The validity and effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

Robust Camera Calibration using TSK Fuzzy Modeling

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

Representation of Geometric Tolerances and its Application to Assemblability Checking (기하 공차의 표현 및 조립성 확인에의 응용)

  • 박상호;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.215-223
    • /
    • 1996
  • Every mechanical part is fabricated with the variations in its size and shape, and the allowable range of the variation is specified by the tolerance in the design stage. Geometric tolerances specify the size or the thickness of each shape entity itself or its relative position and orientation with respect to datums while considering their order of precedence. It would be desirable if the assemblability of parts could be verified in the computer when the tolerances on the parts are store together with the geometric model of the parts of an assembly and their assembled state. Therefore, a new method is proposed to represent geometric tolerances and to determine the assemblability. This method determines the assemblability by subdividing the ranges of relative motion between parts until there exists the subdivided regions that do not cause the interference.

  • PDF

A Model Calculation of Solar Microwave Burst Structure

  • Choi, Yong-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 1995.04a
    • /
    • pp.21-21
    • /
    • 1995
  • The structures of 17GHz microwave burst for bipolar sunspots have investigated. which included the effects of the projected shapes of radio sources as they traverse across the solar disk using a magnetic loop employing a model of solenoid coils. An ensemble of high-energy electrons confined in the loop be assumed. The projected brightnesls distributions of gyrosynchrotron emission in x- and o-modes are computed and converted into total intensity and circular polarization difference at 17GHz for various heliocentric distances using numerical integration of the transfer equation along the line of sight. The results of computations at 17GHz for optical thin case will be presented. and the effects of the orientation of the loop will be discussed in detail, as well as the effect of size, position, Structure, and polarization of the emission. Also the results of the various physical P8lrameters such as the strength of magnetic field. high and low energy cut-off of accelerated electrons. spectral index and density of electrons will be preslmted. After comparing the results of model calculation with observations. we found that the observations can be well explained in terms of a loop model and its projection effect.effect.

  • PDF

Positioning Accuracy Improvement of Robots by Link Parameter Calibration (링크인자 보정에 의한 로보트 위치 정밀도 개선)

  • Cho, Eui-Chung;Ha, Young-Kyun;Lee, Sang-Jo;Park, Young-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.32-45
    • /
    • 1989
  • The positioning accuracy of robots depends upon a forward kinematics which relates the joint variables to the orientation and position of the robot extremity in the absolute coordinate system. The relationship between two connective joint coordi- nates of a robot, which is the basis of the kinematics, is defined by 4 Denavit-Hartenberg parameters. But manufacturing errors in machining and assembly process of robots lead to disctrepancies between the design parameters and the physical structure. Thus, improving the positioning accuracy of robots reguires the identification of the actual link parameters of each robot. In this study, the least-squares method is used to calibrate the link parameters and off-line parameter calibration software is developed. Computer simulation is done to study the dependence of the calibration performance upon the DOF of the robot and number of acquired data set used in the least-squares method. 3 DOF Robot/Controller and specially designed 3D coordinate measurer is made and experiment is carried out to verify the theoretical and computational analysis.

  • PDF

Hand/Eye calibration of Robot arms with a 3D visual sensing system (3차원 시각 센서를 탑재한로봇의 Hand/Eye 캘리브레이션)

  • 김민영;노영준;조형석;김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.76-76
    • /
    • 2000
  • The calibration of the robot system with a visual sensor consists of robot, hand-to-eye, and sensor calibration. This paper describe a new technique for computing 3D position and orientation of a 3D sensor system relative to the end effect of a robot manipulator in an eye-on-hand robot configuration. When the 3D coordinates of the feature points at each robot movement and the relative robot motion between two robot movements are known, a homogeneous equation of the form AX : XB is derived. To solve for X uniquely, it is necessary to make two robot arm movements and form a system of two equation of the form: A$_1$X : XB$_1$ and A$_2$X = XB$_2$. A closed-form solution to this system of equations is developed and the constraints for solution existence are described in detail. Test results through a series of simulation show that this technique is simple, efficient, and accurate fur hand/eye calibration.

  • PDF

Analysis of Indoor Robot Localization Using Ultrasonic Sensors

  • Naveed, Sairah;Ko, Nak Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • This paper analyzes the Monte Carlo localization (MCL) method, which estimates the pose of an indoor mobile robot. A mobile robot must know where it is to navigate in an indoor environment. The MCL technique is one of the most influential and popular techniques for estimation of robot position and orientation using a particle filter. For the analysis, we perform experiments in an indoor environment with a differential drive robot and ultrasonic range sensor system. The analysis uses MATLAB for implementation of the MCL and investigates the effects of the control parameters on the MCL performance. The control parameters are the uncertainty of the motion model of the mobile robot and the noise level of the measurement model of the range sensor.

Design of a User-Oriented 6-DOF Parallel Haptic Hand Controller (사용자를 고려한 병렬형 6자유도 햅틱 핸드 콘트롤러의 설계)

  • Ryu, Dong-Seok;Kwon, Tae-Yong;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.313-318
    • /
    • 2001
  • A haptic hand controller operated by the user's hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. This paper presents a design method for KU-HHC, 6 DOF Korea University-haptic hand controller, which allows separation of workspace from linkage mechanism in consideration of the efficient user operation. First, the 3 DOF mechanism in which all the actuators are mounted on the fixed base is developed by combining a 5-bar linkage and gimbal mechanism. Then, the 6 DOF HHC is designed by connecting the two 3 DOF devices through a handle. This paper presents the forward and inverse kinematics for this device and Jacobian analysis. Improvement of the kinematic characteristics using performance index is also discussed. The hand controller KU-HHC based on this design concept and kinematic analysis was manufactured and shows excellent performance.

  • PDF

Standards In The Psychological Structure Of The Personality Of Students

  • Liakisheva, Anna;Salamakha, Ihor;Malimon, Liudmyla;Khanykina, Nataliia;Fedorenko, Maryna;Makieshyna, Yuliia
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.301-305
    • /
    • 2021
  • Scientific space, one can observe the differentiation of the definition of the terms "value", "value orientations" because it does not yet have a clear standard definition. Many researchers have dealt with this topic, researched, analyzed, observed, and made conclusions. However, there is still a rich scope for research of such phenomena of personal structure as value orientations. Psychologists-researchers who, in their scientific, practical, and theoretical works, dealt with the topic of values and value orientations and came to the general conclusion that values are a structural component of a personality, with the help of which a person achieves a goal, sets this goal, and characterizes position in life. Saw the relationship between values and the basic structures of the personality, including value orientations-considered in values a system of orientation and personality attitudes.