• Title/Summary/Keyword: pose variation

Search Result 61, Processing Time 0.022 seconds

Robust Three-step facial landmark localization under the complicated condition via ASM and POEM

  • Li, Weisheng;Peng, Lai;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3685-3700
    • /
    • 2015
  • To avoid influences caused by pose, illumination and facial expression variations, we propose a robust three-step algorithm based on ASM and POEM for facial landmark localization. Firstly, Model Selection Factor is utilized to achieve a pose-free initialized shape. Then, we use the global shape model of ASM to describe the whole face and the texture model POEM to adjust the position of each landmark. Thirdly, a second localization is presented to discriminatively refine the subtle shape variation for some organs and contours. Experiments are conducted in four main face datasets, and the results demonstrate that the proposed method accurately localizes facial landmarks and outperforms other state-of-the-art methods.

Analysis of IMU Sensor Sensitivity According to Frequency Variation (주파수 변화에 따른 IMU 센서 민감도 분석)

  • Bugeon Lee;Seongbok Hong;Doohyun Baek;Junghyun Lim;Sanghoo Yoon
    • Journal of Integrative Natural Science
    • /
    • v.17 no.3
    • /
    • pp.113-122
    • /
    • 2024
  • Advancements in sensor technology, particularly Inertial Measurement Units (IMU), are crucial in modern pose estimation. IMUs typically consist of accelerometers and gyroscopes (6-axis), with some models including magnetometers (9-axis). This study investigates the impact of sensor frequency on pose estimation accuracy using data from a 256Hz IMU sensor. The data sets analyzed include "spiralStairs," "stairsAndCorridor," and "straightLine," with frequencies varied to 128Hz, 64Hz, and 32Hz, and conditions categorized as stationary or dynamic. The results indicate that sensitivity remains high at lower frequencies under stationary conditions but declines in dynamic conditions. Performance comparison, based on Root Mean Square Error (RMSE) values, showed that lower frequencies lead to increased RMSE, thus diminishing model accuracy. Additionally, the Extended Kalman Filter (EKF) was tested as an alternative to Madgwick's algorithm but faced challenges due to insufficient sensor noise data.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition (얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술)

  • 장승호;김영욱;박창우;박장한;남궁재찬;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.155-164
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user and is able to doface recognition, which is vital for many surveillance-based systems. The advantage of face recognition compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to the decreasing in dimension from image acquisition step and various changes associated with face pose and background. There are many factors that deteriorate performance of face recognition such as thedistance from camera to the face, changes in lighting, pose change, and change of facial expression. In this paper, we implement a new sliding active camera system to prevent various pose variation that influence face recognition performance andacquired frontal face images using PCA and HMM method to improve the face recognition. This proposed face recognition algorithm can be used for intelligent surveillance system and mobile robot system.

Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner (최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘 설계)

  • Ma, Chang-Min;Yoo, Sung-Hoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.748-753
    • /
    • 2012
  • In this paper, Face recognition algorithm is designed based on optimized pRBFNNs pattern classifier using three-dimensional scanner. Generally two-dimensional image-based face recognition system enables us to extract the facial features using gray-level of images. The environmental variation parameters such as natural sunlight, artificial light and face pose lead to the deterioration of the performance of the system. In this paper, the proposed face recognition algorithm is designed by using three-dimensional scanner to overcome the drawback of two-dimensional face recognition system. First face shape is scanned using three-dimensional scanner and then the pose of scanned face is converted to front image through pose compensation process. Secondly, data with face depth is extracted using point signature method. Finally, the recognition performance is confirmed by using the optimized pRBFNNs for solving high-dimensional pattern recognition problems.

A study on the function of sleeve for the construction of cuffs (Cuffs 구성 면에서 본 Sleeve의 기능성에 관한 연구)

  • 박영득
    • Journal of the Korean Home Economics Association
    • /
    • v.24 no.3
    • /
    • pp.51-58
    • /
    • 1986
  • This study is to investigate the Function of sleeve for the construction of cuffs. Three measuremental items of sleeve cap high, length of sleeve and puff quantity of upper sleeve cap are compared between when the experimental man raises righthand static pose. The wearing test is done in sewing cuffs of either fixing up cuffs or not-fixing up cuffs, and in no cuffs. Three measuremental items are pulled length from sleeve end, pulled length from side waist line, and pulled dimensions from waist line. 1. The result according to the length and dimensions variation caused by a change of sleeve cap high. 2. The results according to the length and dimensions variation caused by a sort of sleeve length. 3. The results according to the length and dimension variation caused by the puff quantity of sleeve cap.

  • PDF

View-Invariant Body Pose Estimation based on Biased Manifold Learning (편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정)

  • Hur, Dong-Cheol;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.960-966
    • /
    • 2009
  • A manifold is used to represent a relationship between high-dimensional data samples in low-dimensional space. In human pose estimation, it is created in low-dimensional space for processing image and 3D body configuration data. Manifold learning is to build a manifold. But it is vulnerable to silhouette variations. Such silhouette variations are occurred due to view-change, person-change, distance-change, and noises. Representing silhouette variations in a single manifold is impossible. In this paper, we focus a silhouette variation problem occurred by view-change. In previous view invariant pose estimation methods based on manifold learning, there were two ways. One is modeling manifolds for all view points. The other is to extract view factors from mapping functions. But these methods do not support one by one mapping for silhouettes and corresponding body configurations because of unsupervised learning. Modeling manifold and extracting view factors are very complex. So we propose a method based on triple manifolds. These are view manifold, pose manifold, and body configuration manifold. In order to build manifolds, we employ biased manifold learning. After building manifolds, we learn mapping functions among spaces (2D image space, pose manifold space, view manifold space, body configuration manifold space, 3D body configuration space). In our experiments, we could estimate various body poses from 24 view points.

Improving Indentification Performance by Integrating Evidence From Evidence

  • Park, Kwang-Chae;Kim, Young-Geil;Cheong, Ha-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.546-552
    • /
    • 2016
  • We present a quantitative evaluation of an algorithm for model-based face recognition. The algorithm actively learns how individual faces vary through video sequences, providing on-line suppression of confounding factors such as expression, lighting and pose. By actively decoupling sources of image variation, the algorithm provides a framework in which identity evidence can be integrated over a sequence. We demonstrate that face recognition can be considerably improved by the analysis of video sequences. The method presented is widely applicable in many multi-class interpretation problems.

Registration System of 3D Footwear data by Foot Movements (발의 움직임 추적에 의한 3차원 신발모델 정합 시스템)

  • Jung, Da-Un;Seo, Yung-Ho;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.24-34
    • /
    • 2007
  • Application systems that easy to access a information have been developed by IT growth and a human life variation. In this paper, we propose a application system to register a 3D footwear model using a monocular camera. In General, a human motion analysis research to body movement. However, this system research a new method to use a foot movement. This paper present a system process and show experiment results. For projection to 2D foot plane from 3D shoe model data, we construct processes that a foot tracking, a projection expression and pose estimation process. This system divide from a 2D image analysis and a 3D pose estimation. First, for a foot tracking, we propose a method that find fixing point by a foot characteristic, and propose a geometric expression to relate 2D coordinate and 3D coordinate to use a monocular camera without a camera calibration. We make a application system, and measure distance error. Then, we confirmed a registration very well.

A New Shape-Based Object Category Recognition Technique using Affine Category Shape Model (Affine Category Shape Model을 이용한 형태 기반 범주 물체 인식 기법)

  • Kim, Dong-Hwan;Choi, Yu-Kyung;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • This paper presents a new shape-based algorithm using affine category shape model for object category recognition and model learning. Affine category shape model is a graph of interconnected nodes whose geometric interactions are modeled using pairwise potentials. In its learning phase, it can efficiently handle large pose variations of objects in training images by estimating 2-D homography transformation between the model and the training images. Since the pairwise potentials are defined on only relative geometric relationship betweenfeatures, the proposed matching algorithm is translation and in-plane rotation invariant and robust to affine transformation. We apply spectral matching algorithm to find feature correspondences, which are then used as initial correspondences for RANSAC algorithm. The 2-D homography transformation and the inlier correspondences which are consistent with this estimate can be efficiently estimated through RANSAC, and new correspondences also can be detected by using the estimated 2-D homography transformation. Experimental results on object category database show that the proposed algorithm is robust to pose variation of objects and provides good recognition performance.

  • PDF