• Title/Summary/Keyword: porous functionally graded shell

Search Result 12, Processing Time 0.02 seconds

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia;Ruiquan Wang;Guang Chen;Kamran Asemi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.

The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells

  • Khayat, Majid;Baghlani, Abdolhossein;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.47-66
    • /
    • 2021
  • This work addresses the free vibration analysis of Functionally Graded Porous (FGP) nanocomposite truncated conical shells with Graphene PLatelet (GPL) reinforcement. In this study, three different distributions for porosity and three different dispersions for graphene platelets have been considered in the direction of the shell thickness. The Halpin-Tsai equations are used to find the effective material properties of the graphene platelet reinforced materials. The equations of motion are derived based on the higher-order shear deformation theory and Sanders's theory. The Fourier Differential Quadrature (FDQ) technique is implemented to solve the governing equations of the problem and to obtain the natural frequencies of the truncated conical shell. The combination of FDQ with higher-order shear deformation theory allows a very accurate prediction of the natural frequencies. The precision and reliability of the proposed method are verified by the results of literature. Moreover, a wide parametric study concerning the effect of some influential parameters, such as the geometrical parameters, porosity distribution, circumferential wave numbers, GPLs dispersion as well as boundary restraint conditions on free vibration response of FGP-GPL truncated conical shell is also carried out and investigated in detail.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Nonlinear primary resonance of multilayer FG shallow shell with an FG porous core reinforced by oblique stiffeners

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.503-516
    • /
    • 2024
  • The present research examines the primary resonance (PR) behaviors of oblique stiffened multilayer functionally graded (OSMFG) shallow shells featuring an FG porous (FGP) core under an external excitation. The research considers two distinct types of FGP cores: one characterized by uniform porosity distribution (UPD) and the other by non-uniform porosity distribution (NPD) along the thickness direction. Furthermore, the study explores two types of shallow shells: one with external oblique stiffeners and one with internal oblique stiffeners, which might have angles that are similar or different from each other. Using the stress function alongside the first-order shear deformation theory (FSDT), the research establishes a nonlinear model for OSMFG shallow shells. The strain-displacement relationships are obtained utilizing FSDT and von-Kármán's geometric assumptions. The Galerkin approach is utilized to discretize the nonlinear governing equations, allowing for the analysis of stiffeners at varied angles. To validate the obtained results, a comparison is made not only with the findings of previous research but also with the response of PR obtained theoretically with the method of multiple scales, using the P-T method. Renowned for its superior accuracy and reliability, the P-T method is deemed an apt selection within this framework. Additionally, the study investigates how differences in material characteristics and stiffener angles affect the system's PR behaviors. The results of this study can be used as standards by engineers and researchers working in this area, and they can offer important information for the design and evaluation of the shell systems under consideration.

Nonlinear vibration analysis of FG porous shear deformable cylindrical shells covered by CNTs-reinforced nanocomposite layers considering neutral surface exact position

  • Zhihui Liu;Kejun Zhu;Xue Wen;Abhinav Kumar
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • This paper presents nonlinear vibration analysis of a composite cylindrical shell. The core of the shell is made of functionally graded (FG) porous materials and layers is fabricated of carbon nanotubes (CNTs) reinforced nanocomposites. To increase the accuracy of results, neutral surface position is considered. First-order shear deformation theory is used as displacement field to derive the basic relations of equation motions. In addition, von-Karman nonlinear strains are employed to account geometric nonlinearity and to enhance the results' precision, the exact position of the neutral surface is considered. To governing the partial equations of motion, the Hamilton's principle is used. To reduce the equation motions into a nonlinear motion equation, the Galerkin's approach is employed. After that the nonlinear motion equation is solved by multiple scales method. Effect of various parameters such as volume fraction and distribution of CNTs along the thickness directions, different patterns and efficiency coefficients of porous materials, geometric characteristics and initial conditions on nonlinear to linear ratio of frequency is investigated.

Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Nia, Alireza Farrokhi;Badnava, Salman;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.149-156
    • /
    • 2020
  • The present paper explores forced vibrational properties of porosity-dependent functionally graded (FG) cylindrical nanoshells exposed to linear-type or triangular-type impulse load via classical shell theory (CST) and nonlocal strain gradient theory (NSGT). Employing such scale-dependent theory, two scale factors accounting for stiffness softening and hardening effects are incorporated in modeling of the nanoshell. Two sorts of porosity distributions called even and uneven have been taken into account. Governing equations obtained for porous nanoshell have been solved through inverse Laplace transforms technique to derive dynamical deflections. It is shown that transient responses of a nanoshell are affected by the form and position of impulse loading, amount of porosities, porosities dispensation, nonlocal and strain gradient factors.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.