Acknowledgement
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
References
- Abbaszadeh, M. and Dehghan, M. (2020), "An upwind local radial basis functions-differential quadrature (RBFs-DQ) technique to simulate some models arising in water sciences", Ocean Eng., 197, 106844. https://doi.org/10.1016/j.oceaneng.2019.106844.
- Abdollahzadeh Shahrbabaki, E. and Alibeigloo, A. (2014), "Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method", Compos. Struct., 111, 362-370. https://doi.org/10.1016/j.compstruct.2014.01.013.
- Abediokhchi, J., Kouchakzadeh, M.A. and Shakouri, M. (2013), "Buckling analysis of cross-ply laminated conical panels using GDQ method", Compos,Part B: Eng., 55, 440-446. https://doi.org/10.1016/j.compositesb.2013.07.003.
- Akgun, G. and Kurtaran, H. (2018), "Geometrically nonlinear transient analysis of laminated composite super-elliptic shell structures with generalized differential quadrature method", Int. J. Nonlinear Mech., 105, 221-241. https://doi.org/10.1016/j.ijnonlinmec.2018.05.016.
- Ansari, R., Faghih Shojaei, M., Rouhi, H. and Hosseinzadeh, M. (2015), "A novel variational numerical method for analyzing the free vibration of composite conical shells", Appl. Math. Model., 39(10), 2849-2860. https://doi.org/10.1016/j.apm.2014.11.012.
- Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036.
- Bacciocchi, M., Eisenberger, M., Fantuzzi, N., Tornabene, F. and Viola, E. (2016), "Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method", Compos. Struct., 156, 218-237. https://doi.org/10.1016/j.compstruct.2015.12.004.
- Baghlani, A., Khayat, M. and Dehghan, S.M. (2020), "Free vibration analysis of FGM cylindrical shells surrounded by Pasternak elastic foundation in thermal environment considering fluid-structure interaction", Appl. Math.Model., 78, 550-575. https://doi.org/10.1016/j.apm.2019.10.023.
- Baghlani, A., Najafgholipour, M.A. and Khayat, M. (2020), "The influence of mechanical uncertainties on the free vibration of functionally graded graphene-reinforced porous nanocomposite shells of revolution", Eng. Struct., 111356. https://doi.org/10.1016/j.engstruct.2020.111356.
- Bai, X., Cao, D. and Zhang, H. (2020), "Simultaneously morphology and phase controlled synthesis of cobalt manganese hydroxides/reduced graphene oxide for high performance supercapacitor electrodes", Ceramics Int., 46(1), https://doi.org/10.1016/j.ceramint.2020.04.249.
- Behroozi, A.M. and Vaghefi, M. (2020), "Numerical simulation of water hammer using implicit Crank-Nicolson Local Multiquadric Based Differential Quadrature", Int. J. Press. Vess. Piping. 181, 104078. https://doi.org/10.1016/j.ijpvp.2020.104078.
- Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
- Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B: Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
- Civalek, O. (2006), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos.Struct., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353.
- Clare, A.T., Reynolds, W.J., Murray, J.W., Aboulkhair, N.T., Simonelli, M., Hardy, M., Grant, D.M. and Tuck, C. (2020), "Laser calorimetry for assessment of melting behaviour in multi-walled carbon nanotube decorated aluminium by laser powder bed fusion", CIRP Annals, 69(1), https://doi.org/10.1016/j.cirp.2020.04.053.
- Daneshmand, F., Rafiei, M., Mohebpour, S.R. and Heshmati, M. (2013), "Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory", Appl. Math. Model., 37(16-17), 7983-8003. https://doi.org/10.1016/j.apm.2013.01.052.
- de Freitas, D.N., Mendonca, B.H.S., Kohler, M.H., Barbosa, M.C., Matos, M.J.S., Batista, R.J.C. and de Oliveira, A.B. (2020), "Water Diffusion in Carbon Nanotubes Under Directional Electric Fields: Coupling Between Mobility and Hydrogen Bonding", Chem. Phys., 537, 110849. https://doi.org/10.1016/j.chemphys.2020.110849.
- Dehnavi, A. and Soleymanpour, A. (2020), "Highly sensitive voltammetric electrode for the trace measurement of methyldopa based on a pencil graphite modified with phosphomolibdate/graphene oxide", Microchem. J., 157, 104969. https://doi.org/10.1016/j.microc.2020.104969.
- Di Sciuva, M. and Sorrenti, M. (2019), "Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory", Compos. Struct., 227, 111324. https://doi.org/10.1016/j.compstruct.2019.111324.
- Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos.Struct., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
- Do, V.N.V. and Lee, C.H. (2018), "Quasi-3D higher-order shear deformation theory for thermal buckling analysis of FGM plates based on a meshless method", Aerosp. Sci. Technol., 82-83, 450-465. https://doi.org/10.1016/j.ast.2018.09.017.
- Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos.Part B: Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.
- Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
- Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
- Gao, K., Do, D.M., Li, R., Kitipornchai, S. and Yang, J. (2020), "Probabilistic stability analysis of functionally graded graphene reinforced porous beams", Aerosp. Sci. Technol., 98, 105738. https://doi.org/10.1016/j.ast.2020.105738.
- Gautam, A.K., Faraz, M. and Khare, N. (2020), "Enhanced thermoelectric properties of MoS2 with the incorporation of reduced graphene oxide (RGO)", J. Alloys Compounds, 155673. https://doi.org/10.1016/j.jallcom.2020.155673.
- Gupta, A. and Talha, M. (2017), "Influence of Porosity on the Flexural and Free Vibration Responses of Functionally Graded Plates in Thermal Environment", Int. J. Struct. Stab. Dynam., 18(1), 1850013. https://doi.org/10.1142/S021945541850013X.
- Han, C., Li, Y., Wang, Q., Wen, S., Wei, Q., Yan, C., Hao, L., Liu, J. and Shi, Y. (2018), "Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants", J. Mech. Behavior Biomedical Mater., 80, 119-127. https://doi.org/10.1016/j.jmbbm.2018.01.013.
- Heydarpour, Y. and Aghdam, M.M. (2016), "A hybrid Bezier based multi-step method and differential quadrature for 3D transient response of variable stiffness composite plates", Compos. Struct., 154, 344-359. https://doi.org/10.1016/j.compstruct.2016.07.060.
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.
- Hong, C.C. (2010), "Computational approach of piezoelectric shells by the GDQ method", Compos. Struct., 92(3), 811-816. https://doi.org/10.1016/j.compstruct.2009.08.026.
- Hosseini-Hashemi, S. and Ilkhani, M.R. (2016), "Exact solution for free vibrations of spinning nanotube based on nonlocal first order shear deformation shell theory", Compos. Struct., 157, 1-11. https://doi.org/10.1016/j.compstruct.2016.08.019.
- Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255.
- Hu, Y., Ji, W.M. and Zhang, L.W. (2020), "Water-induced Damage Revolution of the Carbon Nanotube Reinforced Poly (methyl methacrylate) Composites", Compos. Part A: Appl. Sci. Manufact., 105954. https://doi.org/10.1016/j.compositesa.2020.105954.
- Irie, T., Yamada, G. and Tanaka, K. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447-453. https://doi.org/10.1016/0022-460X(84)90391-2
- Javani, M., Kiani, Y. and Eslami, M.R. (2019), "Free vibration of arbitrary thick FGM deep arches using unconstrained higher-order shear deformation theory", Thin-Wall. Struct., 136, 258-266. https://doi.org/10.1016/j.tws.2018.12.020.
- Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419.
- Kahkhaie, V.R., Yousefi, M.H., Darbani, S.M.R. and Mobashery, A. (2020), "Enhanced Raman Intensity of Pollutants and Explosives by Using 2-Mercaptoethanol Controlled Pyramid Ag-Iron Nanostructure Embedded Graphene Oxide Platform", Photonics and Nanostructures - Fundamentals and Applications. 100801. https://doi.org/10.1016/j.photonics.2020.100801.
- Kamali, M., Shamsi, M. and Saidi, A.R. (2018), "Surface effect on buckling of microtubules in living cells using first-order shear deformation shell theory and standard linear solid model", Mechanics Res. Commun., 92, 111-117. https://doi.org/10.1016/j.mechrescom.2018.08.011.
- Khandelwal, R.P. and Chakrabarti, A. (2015), "Calculation of interlaminar shear stresses in laminated shallow shell panel using refined higher order shear deformation theory", Compos. Struct., 124, 272-282. https://doi.org/10.1016/j.compstruct.2015.01.025.
- Khayat, M., Baghlani, A. and Dehghan, S.M. (2020), "A semi-analytical boundary method in investigation of dynamic parameters of functionally graded storage tank", J. Braz. Soc. Mech. Sci. Eng., 42(6), 332. https://doi.org/10.1007/s40430-020-02407-1.
- Khayat, M., Baghlani, A. and Najafgholipour, M.A. (2020), "The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets", Compos. Struct., 113209. https://doi.org/10.1016/j.compstruct.2020.113209.
- Khayat, M., Dehghan Seyed, M., Najafgholipour Mohammad, A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735.
- Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1),1-16. https://doi.org/10.12989/scs.2017.23.1.001.
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Semi-Analytical Approach in Buckling Analysis of Functionally Graded Shells of Revolution Subjected to Displacement Dependent Pressure", J. Press. Vess. Technol., 139(6). https://doi.org/10.1115/1.4037042.
- Khayat, M., Poorveis, D., Moradi, S. and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059.
- Khayat, M., Rahnema, H., Baghlani, A. and Dehghan, S.M. (2019), "A theoretical study of wave propagation of eccentrically stiffened FGM plate on Pasternak foundations based on higher-order shear deformation plate theory", Mater. Today Commun., 20 100595. https://doi.org/10.1016/j.mtcomm.2019.100595.
- Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72(9), 2433-2449. https://doi.org/10.1016/j.camwa.2016.09.007.
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation", Compos. Part B: Eng., 147, 169-177. https://doi.org/10.1016/j.compositesb.2018.04.028.
- Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng.: A. 362(1-2), 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1.
- Kim, J.I., Cho, J.S., Wang, D.H. and Park, J.H. (2020), "Highly dispersible graphene oxide nanoflakes in pseudo-gel-polymer porous separators for boosting ion transportation", Carbon, 166, https://doi.org/10.1016/j.carbon.2020.05.003.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
- Korkmaz, A. and Dag, I. (2011), "Polynomial based differential quadrature method for numerical solution of nonlinear Burgers' equation", J. Franklin Inst., 348(10), 2863-2875. https://doi.org/10.1016/j.jfranklin.2011.09.008.
- Kreja, I., Schmidt, R. and Reddy, J.N. (1997), "Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures", Int. J. Nonlinear Mech., 32(6), 1123-1142. https://doi.org/10.1016/S0020-7462(96)00124-2.
- Kurtaran, H. (2015), "Geometrically nonlinear transient analysis of moderately thick laminated composite shallow shells with generalized differential quadrature method", Compos. Struct., 125, 605-614. https://doi.org/10.1016/j.compstruct.2015.02.045.
- Lair, J., Hui, D., Sofiyev, A.H., Gribniak, V. and Turan, F. (2019), "On the parametric instability of multilayered conical shells using the FOSDT", Steel Compos. Struct., 31(3), 277-290. https://doi.org/10.12989/scs.2019.31.3.277.
- Lal, R. and Saini, R. (2020), "Vibration analysis of FGM circular plates under non-linear temperature variation using generalized differential quadrature rule", Appl. Acoust., 158, 107027. https://doi.org/10.1016/j.apacoust.2019.107027.
- Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237(4), 709-725. https://doi.org/10.1006/jsvi.2000.3150.
- Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3), 627-645. https://doi.org/10.1016/j.jsv.2004.01.005.
- Lin, J., Zhao, Y., Watson, D. and Chen, C.S. (2020), "The radial basis function differential quadrature method with ghost points", Math. Comput. Simul., 173, 105-114. https://doi.org/10.1016/j.matcom.2020.01.006.
- Liu, C., Li, X., Li, R., Yang, Q., Zhang, H., Yang, B. and Yang, G. (2020), "Laser ignited combustion of graphene oxide/nitrocellulose membrane for solid propellant micro thruster and solar water distillation", Carbon, 166, https://doi.org/10.1016/j.carbon.2020.05.014.
- Liu, X., George, M.N., Park, S., Ii, A.L.M., Gaihre, B., Li, L., Waletzki, B.E., Terzic, A., Yaszemski, M.J. and Lu, L. (2020), "3D-Printed Scaffolds with Carbon Nanotubes for Bone Tissue Engineering: Fast and Homogeneous One-Step Functionalization", Acta Biomaterialia, 111, https://doi.org/10.1016/j.actbio.2020.04.047.
- Lu, Z., Yu, J., Yao, J. and Hou, D. (2020), "Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide", Cement Concrete Compos., 112, 103676. https://doi.org/10.1016/j.cemconcomp.2020.103676.
- Malekzadeh, P. (2009), "A two-dimensional layerwise-differential quadrature static analysis of thick laminated composite circular arches", Appl. Math. Model., 33(4), 1850-1861. https://doi.org/10.1016/j.apm.2008.03.008.
- Malekzadeh, P., Setoodeh, A.R. and Shojaee, M. (2018), "Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method", Comput. Method. Appl. M., 340, 451-479. https://doi.org/10.1016/j.cma.2018.06.006.
- Matsukawa, Y., Ohura, S. and Umemura, K. (2020), "Effect on near-infrared absorption spectra of DNA/single-walled carbon nanotube (SWNT) complexes by adsorption of a blocking reagent", Colloids Surfaces B: Biointerfaces, 111072. https://doi.org/10.1016/j.colsurfb.2020.111072.
- Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.
- Mehditabar, A., Rahimi, G.H. and Fard, K.M. (2018), "Vibrational responses of antisymmetric angle-ply laminated conical shell by the methods of polynomial based differential quadrature and Fourier expansion based differential quadrature", Appl. Math. Comput., 320, 580-595. https://doi.org/10.1016/j.amc.2017.10.017.
- Mercan, K., Baltacioglu, A.K. and Civalek, O. (2018), "Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method", Compos. Struct., 186, 139-153. https://doi.org/10.1016/j.compstruct.2017.12.008.
- Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels", Compos. Struct., 142, 45-56. https://doi.org/10.1016/j.compstruct.2015.12.071.
- Mohammadkhani, R., Ramezanzadeh, M., Akbarzadeh, S., Bahlakeh, G. and Ramezanzadeh, B. (2020), "Graphene oxide nanoplatforms reduction by green plant-sourced organic compounds for construction of an active anti-corrosion coating; experimental/electronic-scale DFT-D modeling studies", Chem. Eng. J., 397, 125433. https://doi.org/10.1016/j.cej.2020.125433.
- Nemati, S., Lima, P.M. and Sedaghat, S. (2020), "Legendre wavelet collocation method combined with the Gauss-Jacobi quadrature for solving fractional delay-type integro-differential equations", Appl. Numer. Math., 149, 99-112. https://doi.org/10.1016/j.apnum.2019.05.024.
- Nezamoleslami, R. and Khadem, S.E. (2017), "Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs", Steel Compos. Struct., 24(2), 249-264. https://doi.org/10.12989/scs.2017.24.2.249.
- Niu, Y., Zhang, W. and Guo, X.Y. (2019), "Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets", Eur. J. Mech. - A/Solids, 77, 103798. https://doi.org/10.1016/j.euromechsol.2019.103798.
- Oliva, M., De Marchi, L., Vieira Sanches, M., Pires, A., Cuccaro, A., Baratti, M., Chiellini, F., Morelli, A., Freitas, R. and Pretti, C. (2020), "Atlantic and Mediterranean populations of the widespread serpulid Ficopomatus enigmaticus: Developmental responses to carbon nanotubes", Marine Pollut. Bull., 156, 111265. https://doi.org/10.1016/j.marpolbul.2020.111265.
- Patil, M.A. and Kadoli, R. (2020), "Differential quadrature solution for vibration control of functionally graded beams with Terfenol-D layer", Appl. Math. Model., 84, 137-157. https://doi.org/10.1016/j.apm.2020.03.035.
- Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng: A, 362(1), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
- Rahmani, M., Mohammadi, Y. and Kakavand, F. (2019), "Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings", Steel Compos. Struct., 32(2), 239-252. https://doi.org/10.12989/scs.2019.32.2.239.
- Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Selim, B.A., Yin, B.B. and Liew, K.M. (2018), "Impact analysis of CNT-reinforced composite plates integrated with piezoelectric layers based on Reddy's higher-order shear deformation theory", Compos. Part B: Eng., 136, 10-19. https://doi.org/10.1016/j.compositesb.2017.09.074.
- Shakouri, M. (2019), "Free vibration analysis of functionally graded rotating conical shells in thermal environment", Compos. Part B: Eng., 163, 574-584. https://doi.org/10.1016/j.compositesb.2019.01.007.
- Shao, W. and Wu, X. (2011), "Fourier differential quadrature method for irregular thin plate bending problems on Winkler foundation", Eng. Anal. Bound. Elem., 35(3), 389-394. https://doi.org/10.1016/j.enganabound.2010.09.011.
- Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints", Compos. Struct., 182, 420-434. https://doi.org/10.1016/j.compstruct.2017.09.045.
- Shu, C. and Chew, Y.T. (1997), "Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems", Commun. Numer. Method. Eng., 13(8), 643-653. https://doi.org/10.1002/(SICI)1099-0887(199708)13:8<643::AID-CNM92>3.0.CO;2-F.
- Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct., 33(3), 195-208. https://doi.org/10.12989/scs.2019.33.2.195.
- Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/scs.2017.25.5.581.
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
- Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B: Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043.
- Sun, C., Li, W., Xu, Y., Hu, N., Ma, J., Cao, W., Sun, S., Hu, C., Zhao, Y. and Huang, Q. (2020), "Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus", Aquatic Toxicology. 105504. https://doi.org/10.1016/j.aquatox.2020.105504.
- Tamilalagan, E., Akilarasan, M., Chen, S.M., Chen, T.W., Huang, Y.C., Hao, Q. and Lei, W. (2020), "A sonochemical assisted synthesis of hollow sphere structured tin (IV) oxide on graphene oxide sheets for the low-level detection of environmental pollutant mercury in biological samples and foodstuffs", Ultrasonics Sonochemistry, 67, 105164. https://doi.org/10.1016/j.ultsonch.2020.105164.
- Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells", Steel Compos. Struct., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397.
- Torabi, J., Ansari, R. and Hassani, R. (2019), "Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory", Eur. J. Mech. - A/Solids, 73, 144-160. https://doi.org/10.1016/j.euromechsol.2018.07.009.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B: Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Dimitri, R. (2015), "Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method", Thin-Wall. Struct., 97, 114-129. https://doi.org/10.1016/j.tws.2015.08.023.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015), "Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method", Compos. Part B: Eng., 81, 196-230. https://doi.org/10.1016/j.compositesb.2015.07.012.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2018), "Mechanical behavior of damaged laminated composites plates and shells: Higher-order Shear Deformation Theories", Compos. Struct., 189, 304-329. https://doi.org/10.1016/j.compstruct.2018.01.073.
- Tornabene, F., Liverani, A. and Caligiana, G. (2012), "General anisotropic doubly-curved shell theory: A differential quadrature solution for free vibrations of shells and panels of revolution with a free-form meridian", J. Sound Vib., 331(22), 4848-4869. https://doi.org/10.1016/j.jsv.2012.05.036.
- Tornabene, F., Liverani, A. and Caligiana, G. (2012), "Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method", Int. J. Mech. Sci., 61(1), 71-87. https://doi.org/10.1016/j.ijmecsci.2012.05.007.
- Tran, L.V., Ly, H.A., Lee, J., Wahab, M.A. and Nguyen-Xuan, H. (2015), "Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach", Int. J. Mech.Sci., 96-97, 65-78. https://doi.org/10.1016/j.ijmecsci.2015.03.003.
- Tu, T.M., Quoc, T.H. and Van Long, N. (2019), "Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments", Aerosp. Sci. Technol., 84, 698-711. https://doi.org/10.1016/j.ast.2018.11.010.
- Venkatachari, A., Natarajan, S. and Ganapathi, M. (2018), "Variable stiffness laminated composite shells - Free vibration characteristics based on higher-order structural theory", Compos. Struct., 188, 407-414. https://doi.org/10.1016/j.compstruct.2018.01.025.
- Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Results in Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
- Wang, J.G., Ren, L., Hou, Z. and Shao, M. (2020), "Flexible reduced graphene oxide/prussian blue films for hybrid supercapacitors", Chem.Eng. J., 397, 125521. https://doi.org/10.1016/j.cej.2020.125521
- Wang, Q., Shao, D. and Qin, B. (2018), "A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions", Compos. Struct., 184, 211-232. https://doi.org/10.1016/j.compstruct.2017.09.070.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Wang, Y.Q., Liu, Y.F. and Zu, J.W. (2019), "Size-Dependent Vibration of Circular Cylindrical Polymeric Microshells Reinforced with Graphene Platelets", Int. J. Appl. Mech., 11(4), 1950036. https://doi.org/10.1142/S1758825119500364.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
- Watson, D.W., Karageorghis, A. and Chen, C.S. (2020), "The radial basis function-differential quadrature method for elliptic problems in annular domains", J. Comput. Appl. Math., 363, 53-76. https://doi.org/10.1016/j.cam.2019.05.027.
- Winiarski, J.P., Rampanelli, R., Bassani, J.C., Mezalira, D.Z. and Jost, C.L. (2020), "Multi-walled carbon nanotubes/nickel hydroxide composite applied as electrochemical sensor for folic acid (vitamin B9) in food samples", J. Food Compos. Anal., 103511. https://doi.org/10.1016/j.jfca.2020.103511.
- Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Design, 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025.
- Wu, H., Yang, J. and Kitipornchai, S. (2017), "Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment", Compos. Struct., 162, 244-254. https://doi.org/10.1016/j.compstruct.2016.12.001.
- Wu, H., Zhu, J., Kitipornchai, S., Wang, Q., Ke, L.L. and Yang, J. (2020), "Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments", Compos. Struct., 239, 112047. https://doi.org/10.1016/j.compstruct.2020.112047.
- Wu, M., Ge, S., Jiao, C., Yan, Z., Jiang, H., Zhu, Y., Dong, B., Dong, M. and Guo, Z. (2020), "Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes", Polymer, 200, 122547. https://doi.org/10.1016/j.polymer.2020.122547.
- Xu, D., Liang, H., Zhu, X., Yang, L., Luo, X., Guo, Y., Liu, Y., Bai, L., Li, G. and Tang, X. (2020), "Metal-polyphenol dual crosslinked graphene oxide membrane for desalination of textile wastewater", Desalination, 487, 114503. https://doi.org/10.1016/j.desal.2020.114503.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
- Yang, D., Shen, J., Fan, J., Chen, Y. and Guo, X. (2020), "Paracellular Permeability Changes Induced by Multi-walled Carbon Nanotubes in Brain Endothelial Cells and Associated Roles of Hemichannels", Toxicology, 440, 152491. https://doi.org/10.1016/j.tox.2020.152491.
- Yang, F., Liu, X., Zhang, H., Zhou, J., Jiang, J. and Lu, X. (2020), "Boosting oxygen catalytic kinetics of carbon nanotubes by oxygen-induced electron density modulation for advanced Zn-Air batteries", Energy Storage Mater., 30, 138-145. https://doi.org/10.1016/j.ensm.2020.05.005.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
- Yang, Z., Liu, A., Yang, J., Fu, J. and Yang, B. (2020), "Dynamic buckling of functionally graded graphene nanoplatelets reinforced composite shallow arches under a step central point load", J. Sound Vib., 465, 115019. https://doi.org/10.1016/j.jsv.2019.115019.
- Ye, F., Zhang, Z., Mi, Y., Huang, Z., Yuan, H., Zhang, Z. and Luo, Y. (2020), "Carbon nanotubes grafted with β-cyclodextrin by an ultrasonication method and its demulsification performance in oily wastewater", Colloids and Surfaces A: Physicochemical and Engineering Aspects. 600, 124939. https://doi.org/10.1016/j.colsurfa.2020.124939.
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021.
- Zhang, B., Li, H., Kong, L., Shen, H. and Zhang, X. (2020), "Size-dependent static and dynamic analysis of Reddy-type microbeams by strain gradient differential quadrature finite element method", Thin-Wall. Struct., 148, 106496. https://doi.org/10.1016/j.tws.2019.106496.
- Zhang, B., Li, H., Kong, L., Zhang, X. and Shen, H. (2020), "Strain gradient differential quadrature Kirchhoff plate finite element with the C2 partial compatibility", Eur. J. Mech. - A/Solids, 80, 103879. https://doi.org/10.1016/j.euromechsol.2019.103879.
- Zhang, G. and Zhu, R. (2020), "Runge-Kutta convolution quadrature methods with convergence and stability analysis for nonlinear singular fractional integro-differential equations", Commun. Nonlinear Scie. Numer. Simul., 84, 105132. https://doi.org/10.1016/j.cnsns.2019.105132.
- Zhang, W., Wnag, D.M. and Yao, M.H. (2014), "Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam", Nonlinear Dynam., 78(2), 839-856. https://doi.org/10.1007/s11071-014-1481-3.
- Zhang, X.Y., Fang, G., Leeflang, S., Zadpoor, A.A. and Zhou, J. (2019), "Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials", Acta Biomaterialia, 84, 437-452. https://doi.org/10.1016/j.actbio.2018.12.013.
- Zhang, X.X., Zhang, J.F., Liu, Z.Y., Gan, W.M., Hofmann, M., Andra, H., Xiao, B.L. and Ma, Z.Y. (2020), "Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction", J. Mater. Sci. Technol., 54, 58-68. https://doi.org/10.1016/j.jmst.2020.04.016.
- Zhang, Y., Wang, H., Qian, P., Zhou, Y., Shi, J. and Shi, H. (2020), "Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: A comparative study", J. Membrane Sci., 610, 118232. https://doi.org/10.1016/j.memsci.2020.118232.
- Zhang, Y.M., Mirfakhraei, P., Xu, B. and Redekop, D. (1998), "A computer program for the elastostatics of a toroidal shell using the differential quadrature method", Int. J. Press. Vess. Piping, 75(13), 919-929. https://doi.org/10.1016/S0308-0161(98)00092-1.
- Zhao, J., Choe, K., Shuai, C., Wang, A. and Wang, Q. (2019), "Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions", Compos. Part B: Eng., 160, 225-240. https://doi.org/10.1016/j.compositesb.2018.09.105.
- Zhao, S., Yang, Z., Kitipornchai, S. and Yang, J. (2020), "Dynamic instability of functionally graded porous arches reinforced by graphene platelets", Thin-Wall. Struct., 147, 106491. https://doi.org/10.1016/j.tws.2019.106491.
- Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044.
- Zhou, X., Liu, X., Zhang, J., Zhang, C., Yoo, S.J., Kim, J.-G., Chu, X., Song, C., Wang, P., Zhao, Z., Li, D., Zhang, W. and Zheng, W. (2020), "Highly-dispersed cobalt clusters decorated onto nitrogen-doped carbon nanotubes as multifunctional electrocatalysts for OER, HER and ORR", Carbon, 166, 284-290. https://doi.org/10.1016/j.carbon.2020.05.037.
- Zhu, C., Mahmood, Z., Zhang, W., Akram, M.W., Ainur, D. and Ma, H. (2020), "In situ investigation of acute exposure of graphene oxide on activated sludge: Biofilm characteristics, microbial activity and cytotoxicity", Ecotoxicol. Environ. Saf.. 199, 110639. https://doi.org/10.1016/j.ecoenv.2020.110639.
- Zielnica, J. (2012), "Buckling and stability of elastic-plastic sandwich conical shells", Steel Compos. Struct., 13(2), 157-169. https://doi.org/10.12989/scs.2012.13.2.157.