• Title/Summary/Keyword: porous disc

Search Result 17, Processing Time 0.021 seconds

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

Fabrication of Biodegradable Disc-shaped Microparticles with Micropattern using a Hot Embossing Process with Porous Microparticles

  • Hwang, Ji-Yea;Choy, Young-Bin;Seo, Soon-Min;Park, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.147-151
    • /
    • 2011
  • This paper demonstrates the development of a method for preparing micropatterned microdiscs in order to increase contact area with cells and to change the release pattern of drugs. The microdiscs were manufactured with hot embossing, where a polyurethane master structure was pressed onto both solid and porous microparticles made of polylactic-co-glycolic acid at various temperatures to form a micropattern on the microdiscs. Flat microdiscs were formed by hot embossing of porous microparticles; the porosity allowed space for flattening of the microdiscs. Three types of micro-grooves were patterned onto the flat microdiscs using prepared micropatterned molds: (1) 10 ${\mu}M$ deep, 5 ${\mu}M$ wide, and spaced 2 ${\mu}M$ apart; (2) 10 ${\mu}M$ deep, 9 ${\mu}M$ wide, and spaced 5 ${\mu}M$ apart; and (3) 10 ${\mu}M$ deep, 50 ${\mu}M$ wide, and spaced 50 ${\mu}M$ apart. This novel microdisc preparation method using hot embossing to create micropatterns on flattened porous microparticles provides the opportunity for low-cost, rapid manufacture of microdiscs that can be used to control cell adhesion and drug delivery rates.

A Study on the Wear Characteristics of Compound Layers Formed during Gaseous Nitrocarburizing in Medium Carbon Boron Steels (중탄소 Boron강의 가스침질탄화처리에 의해 형성된 화합물층의 마모특성에 관한 연구)

  • Park, K.W.;Oh, D.W.;Cho, H.S.;Lee, H.W.;Lee, J.B.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • The study on the wear characteristics of compound layers formed during gaseous nitrocarburising in the medium carbon boron steels and the plain carbon steel has been carried out by using a pin-on-disc type wear test machine under the oil lubricating condition at room temperature and by varying applied loads, sliding speeds and wear distances. Values of friction coefficient measured at the sliding speed of 0.4m/sec under the oil lubricating condition have been shown to decrease considerably with increasing applied load and become gradually a constant value as load is increased to a higher value, showing that the transition load for friction coefficient appears at an applied load of 247.2N. The length and volume wear rates of compound layer have been revealed to relatively constantly increase, also showing that the wear life per unit thickness of compound layer turns out to be superior as porous layer has a denser and thinner appearance. As the sliding speed increases during wear test performed by varying sliding speed at a load of 63.2N under the oil lubricating condition for medium carbon boron steel nitrocarburised in gas atmosphere, the wear rate has been found to increase, the friction coefficient to decrease and the wear life per unit thickness of compound layer to decrease considerably.

  • PDF

Reaction Characteristics of Combined Steam and Carbon Dioxide Reforming of Methane Reaction Using Pd-Ni-YSZ Catalyst (Pd-Ni-YSZ 촉매를 이용한 수증기-이산화탄소 복합개질 반응 특성)

  • Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.382-387
    • /
    • 2018
  • In this study, the reaction characteristics of combined steam and carbon dioxide reforming of methane (CSCRM) reaction using Pd-Ni-YSZ catalyst were investigated according to types of catalysts and gas compositions. Catalysts were prepared in the form of powder and porous disk. The injected gases were supplied at different ratios of $CH_4/CO_2/H_2O$. As a result, the conversion of $CH_4$ and $CO_2$ was improved as a result of using the porous disc type catalyst as compared with that of the powder type catalyst. When the $CH_4/CO_2/H_2O$ ratio of the feed gas was 1 : 0.5 : 0.5, the $H_2/CO$ ratio was adjusted close to 2. However, after 6 hours of the reaction, $CH_4$ conversion was partially reduced by the carbon deposition and the pressure drop increased from 0.1 to 0.8. This issue was then solved by optimizing the water content. As a result, it was confirmed that the durability was secured by preventing the carbon deposition when the gas was supplied at a $CH_4/CO_2/H_2O$ ratio of 1 : 0.5 : 1, and the conversion rate was maintained at a relatively high level.

Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis (수열합성 공정을 이용한 금속 다공체의 나노 산화물 형성)

  • Park, H.J.;Kim, Y.S.;Hong, S.H.;Kim, J.T.;Cho, J.Y.;Lee, W.H.;Kim, Ki Buem
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ metallic glass powder under of 0.2 kJ generated by a $450{\mu}F$ capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at $150^{\circ}C$ for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped $Fe_2O_3$ and needle-shaped $Fe_3O_4$ are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

Regeneration of Intervertebral Disc Using Poly(lactic-co-glycolic acid) Scaffolds Included Demineralized Bone Particle In Vivo (In vivo 상에서 탈미네랄화된 골분이 함유된 PLGA 지지체를 이용한 추간판 디스크 재생)

  • Jang, Ji Eun;Kim, Hye Yoon;Song, Jeong Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.669-676
    • /
    • 2013
  • Demineralized bone particle (DBP) is a biomaterial used widely in the field of tissue engineering. In this study, in order to study the effect of DBP/poly(lactic-co-glycolic acid) (PLGA) scaffold on disc regeneration in vivo environment, we prepared the porous DBP/PLGA hybrid scaffold. Disc defect was induced by removing the nucleus pulposus tissue after incision the annulus fibrosus tissue in half and scaffolds were transplanted. After 1, 2 and 3 months later, the extracted discs were confirmed by collagen synthesis and glycosaminoglycan (sGAG). We conducted histology (H&E, Safranin-O, Alcian blue, Type I Collagen, Type II Collagen). From the results, it was confirmed that collagen and sGAG content were high in DBP/PLGA scaffold, and the regeneration of intervertebral disc was possible.

Duplex Surface Modification with Micro-arc Discharge Oxidation and Magnetron Sputtering for Aluminum Alloys

  • Tong, Honghui;Jin, Fanya;He, Heng
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.21-27
    • /
    • 2003
  • Micro-arc discharge oxidation (MDO) is a cost-effective plasma electrolytic process which can be used to improve the wear and corrosion resistance of Al-alloy parts by forming a alumina coating on the component surface. However, the MDO coated Al-alloy components often exhibit relatively high friction coefficients and low wear resistance fitted with many counterface materials, additionally, the pitting corrosion for the MDO coated AI-alloy components, especially for a thinner alumina coating, often occurs in atmosphere circumstance due to the porous alumina coats. Therefore, a duplex treatment, combining a MDO coated ahumina thin layer with a TiN coating, prepared by magnetron sputtering (MS), has been investigated. The Vicker's microhardness, pin-on-disc, electrochemical measurement, salt spray, XRD and SEM tests were used to characterize and analyze the treated samples. The work demonstrates that the MDO/MS coated samples have a combination of a very low friction coefficient and good wear resistance as well as corrosion since the micro-holes on alumina coating are partly or fully covered by TiN material.

Validation of the optimal scaffold pore size of nasal implants using the 3-dimensional culture technique

  • Nam, Jeoung Hyun;Lee, So Yun;Khan, Galina;Park, Eun Soo
    • Archives of Plastic Surgery
    • /
    • v.47 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • Background To produce patient-specific nasal implants, it is necessary to harvest and grow autologous cartilage. It is crucial to the proliferation and growth of these cells for scaffolds similar to the extracellular matrix to be prepared. The pore size of the scaffold is critical to cell growth and interaction. Thus, the goal of this study was to determine the optimal pore size for the growth of chondrocytes and fibroblasts. Methods Porous disc-shaped scaffolds with 100-, 200-, 300-, and 400-㎛ pores were produced using polycaprolactone (PCL). Chondrocytes and fibroblasts were cultured after seeding the scaffolds with these cells, and morphologic evaluation was performed on days 2, 14, 28, and 56 after cell seeding. On each of those days, the number of viable cells was evaluated quantitatively using an MTT assay. Results The number of cells had moderately increased by day 28. This increase was noteworthy for the 300- and 400-㎛ pore sizes for fibroblasts; otherwise, no remarkable difference was observed at any size except the 100-㎛ pore size for chondrocytes. By day 56, the number of cells was observed to increase with pore size, and the number of chondrocytes had markedly increased at the 400-㎛ pore size. The findings of the morphologic evaluation were consistent with those of the quantitative evaluation. Conclusions Experiments using disc-type PCL scaffolds showed (via both morphologic and quantitative analysis) that chondrocytes and fibroblasts proliferated most extensively at the 400-㎛ pore size in 56 days of culture.