DOI QR코드

DOI QR Code

Regeneration of Intervertebral Disc Using Poly(lactic-co-glycolic acid) Scaffolds Included Demineralized Bone Particle In Vivo

In vivo 상에서 탈미네랄화된 골분이 함유된 PLGA 지지체를 이용한 추간판 디스크 재생

  • Jang, Ji Eun (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of PolymerNano Sci. Tech., Chonbuk National Univ.) ;
  • Kim, Hye Yoon (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of PolymerNano Sci. Tech., Chonbuk National Univ.) ;
  • Song, Jeong Eun (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of PolymerNano Sci. Tech., Chonbuk National Univ.) ;
  • Lee, Dongwon (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of PolymerNano Sci. Tech., Chonbuk National Univ.) ;
  • Kwon, Soon Yong (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Chung, Jin Wha (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of PolymerNano Sci. Tech., Chonbuk National Univ.)
  • 장지은 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 김혜윤 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 송정은 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자나노공학과) ;
  • 권순용 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 정진화 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자나노공학과)
  • Received : 2013.05.06
  • Accepted : 2013.06.12
  • Published : 2013.11.25

Abstract

Demineralized bone particle (DBP) is a biomaterial used widely in the field of tissue engineering. In this study, in order to study the effect of DBP/poly(lactic-co-glycolic acid) (PLGA) scaffold on disc regeneration in vivo environment, we prepared the porous DBP/PLGA hybrid scaffold. Disc defect was induced by removing the nucleus pulposus tissue after incision the annulus fibrosus tissue in half and scaffolds were transplanted. After 1, 2 and 3 months later, the extracted discs were confirmed by collagen synthesis and glycosaminoglycan (sGAG). We conducted histology (H&E, Safranin-O, Alcian blue, Type I Collagen, Type II Collagen). From the results, it was confirmed that collagen and sGAG content were high in DBP/PLGA scaffold, and the regeneration of intervertebral disc was possible.

탈미네랄화된 골분(demineralized bone particle, DBP)은 연골 형성의 유도인자로 사용되기 때문에 조직공학에서 널리 사용되는 생체재료이다. 본 연구에서는 in vivo 환경에서 디스크 재생 효과를 연구하기 위해 DBP를 poly(lactic-co-glycolic acid) (PLGA)에 첨가하여 다공성 지지체를 제조하였다. 디스크의 섬유륜 조직을 반으로 절개한 후, 수핵 조직을 제거하여 디스크 결손을 유발시켰다. 빈 공간에 PLGA, DBP/PLGA 지지체를 이식하여 in vivo 환경에서 조직공학적 디스크 재생을 관찰하였다. 1, 2 및 3개월 후 디스크를 적출하여 글리코스아미노글라이칸(glycosaminoglycan, sGAG) 및 콜라겐 합성 정도를 측정하였으며 조직학적 평가로 H&E, Safranin-O, Alcian blue 염색과 면역조직학적 평가로 제 I형 콜라겐, 제 II형 콜라겐 염색을 수행하였다. 그 결과 DBP/PLGA 지지체에서 sGAG 및 콜라겐 함량이 높은 것을 확인하였으며 추간판 디스크 재생의 가능성을 확인하였다.

Keywords

References

  1. M. Endres, A. Abbushi, U. W. Thomale, M. Cabraja, S. N. Kroppenstedt, L. Morawietz, P. A. Casalis, M. L. Zenclussen, A. J. Lemke, P. Horn, C. Kaps, and C. Woiciechowsky, Biomaterials, 31, 5836 (2010). https://doi.org/10.1016/j.biomaterials.2010.03.078
  2. H. Shankar, J. A. Scarlett, and S. E. Abram, Tech. Reg. Anesth. Pain. Manag., 13, 67 (2009). https://doi.org/10.1053/j.trap.2009.05.001
  3. A. H. Hsieh and J. D. Twomey, J. Biomech., 43, 137 (2010). https://doi.org/10.1016/j.jbiomech.2009.09.019
  4. M. A. Adams, P. Dolan, and D. S. McNally, Matrix Biology, 28, 384 (2009). https://doi.org/10.1016/j.matbio.2009.06.004
  5. S. R. S. Bibby, D. A. Jones, R. B. Lee, J. Yu, and J. P. G. Urban, Joint Bone Spine, 68, 537 (2001). https://doi.org/10.1016/S1297-319X(01)00332-3
  6. M. Endres, A. Abbushi, U. W. Thomale, M. Cabraja, S. N. Kroppenstedt, L. Morawietz, P. A. Casalis, M. L. Zenclussen, A. J. Lemke, P. Horn, C. Kaps, and C. Woiciechowsky, Biomaterials, 31, 5836 (2010). https://doi.org/10.1016/j.biomaterials.2010.03.078
  7. S. K. Lee, H. K. Hong, S. J. Kim, Y. K. Kim, D. Lee, and G. Khang, Polymer(Korea), 34, 398 (2010).
  8. G. Q. Zhou, F. Yang, V. V. L. Leung, and K. M. C. Cheung, Curr. Orthopaed., 22, 267 (2008). https://doi.org/10.1016/j.cuor.2008.05.008
  9. M. A. Adams and P. J. Roughley, Spine(Phila Pa 1976), 31, 2151 (2006). https://doi.org/10.1097/01.brs.0000231761.73859.2c
  10. L. Jin, G. Feng, D. L. Reames, A. L. Shimer, F. H. Shen, and X. Li, Spine J., 13, 235 (2013). https://doi.org/10.1016/j.spinee.2012.01.022
  11. H. E. Gruber, K. Leslie, J. Ingram, H. J. Norton, and E. N. Hanley, Jr., Spine J., 4, 44 (2004). https://doi.org/10.1016/S1529-9430(03)00425-X
  12. J. Melrose, S. Smith, P. Ghosh, and T. K. F. Taylor, Cells Tissues Organs, 168, 137 (2001). https://doi.org/10.1159/000047829
  13. X. Shao and C. J. Hunter, J. Biomed. Mater. Res. Part A, 82A, 701 (2007). https://doi.org/10.1002/jbm.a.31030
  14. H. K. Hong, S. K. Lee, Y. S. Song, D. S. Kim, S. Eom, H. E. Kim, D. Lee, and G. Khang, Polymer(Korea), 34, 282 (2010).
  15. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007).
  16. Y. Woo and K. Na, Inter. J. Tissue Regen., 3, 63 (2012).
  17. B. K. Gu, M. S. Kim, S. J. Park, and C. H. Kim, Inter. J. Tissue Regen., 2, 83 (2011).
  18. D. H. Yang, H. N. Park, J. B. Lee, D. N. Heo, M. S. Bae, and I. K. Kwon, Inter. J. Tissue Regen., 2, 119 (2011).
  19. D. Kolse, C. Delplace, and J. Siepmann, Int. J. Pharm., 404, 75 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.054
  20. A. F. Carballido, P. Pastoriza, E. Barcia, C. Montejo, and S. Negro, Int. J. Pharm., 352, 50 (2008). https://doi.org/10.1016/j.ijpharm.2007.10.007
  21. E. H. Jo, S. J. Kim, S. J. Cho, G. Y. Lee, O. Y. Kim, E. Y. Lee, W. H. Cho, D. W. Lee, and G. Khang, Polymer(Korea), 35, 289 (2011).
  22. F. L. Mi, Y. M. Lin, Y. B. Wu, S. S. Shyu, and Y. H. Tsai, Biomaterials, 23, 3257 (2002). https://doi.org/10.1016/S0142-9612(02)00084-4
  23. H. W. Bae, L. Zhao, L. E. A. Kanim, P. B. S. Pamela, R. B. Delamarter, and E. G. Dawson, Spine, 31, 1299 (2006). https://doi.org/10.1097/01.brs.0000218581.92992.b7
  24. S. Mizuno and J. Glowacki, Cells Tissues Organs, 180, 151 (2005). https://doi.org/10.1159/000088243
  25. S. J. Yoon, S. K. Kim, H. J. Ha, Y. K. Ko, J. W. So, M. S. Kim, Y. I. Yang, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Part A, 14, 539 (2008). https://doi.org/10.1089/tea.2007.0129
  26. A. R. Kim, H. M. Kim, J. K. Lee, J. H. Lee, J. E. Song, K. H. Yoon, D. Lee, and G. Khang, Polymer(Korea), 36, 768 (2012).
  27. Y. M. Lee, C. R. Shim, Y. J. Lee, H. N. Kim, S. A. Jo, J. E. Song, D. Lee, and G. Khang, Polymer(Korea), 36, 789 (2012).
  28. Y. K. Ko, J. S. Jeong, S. H. Kim, J. Y. Lim, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 32, 109 (2008).
  29. M. R. Urist, Science, 150, 893 (1965). https://doi.org/10.1126/science.150.3698.893
  30. J. C. Iatridis, S. B. Nicoll, A. J. Michalek, B. A. Walter, and M. S. Gupta, Spine. J., 13, 243 (2013). https://doi.org/10.1016/j.spinee.2012.12.002
  31. H. E. Kim, H. N. Kim, H. Yu, J. E. Song, S. Y. Jeoung, Y. Kim, D. Lee, and G. Khang, Macromol. Res., 20, 1044 (2012). https://doi.org/10.1007/s13233-012-0148-5
  32. A. A. Hegewald, S. Zouhair, M. Endres, Mario, Cabraja, C. Woiciechowsky, C. Thome, and C. Kaps, Tissue and Cell, 45, 68 (2013). https://doi.org/10.1016/j.tice.2012.09.011
  33. Y. H. Kang, J. Korean Spine Surg., 8, 264 (2001). https://doi.org/10.4184/jkss.2001.8.3.264
  34. B. R. Whatley and X. Wen, Mat. Sci. Eng. C, 32, 61 (2012). https://doi.org/10.1016/j.msec.2011.10.011
  35. S. H. Moon, J. Korean Spine Surg., 14, 120 (2007). https://doi.org/10.4184/jkss.2007.14.2.120
  36. S. K. Lee, H. K. Hong, S. J. Kim, Y. K. Kim, Y. S. Song, Y. Ha, D. Lee, and G. Khang, Polymer(Korea), 34, 398 (2010).
  37. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007).

Cited by

  1. The host response to naturally-derived extracellular matrix biomaterials vol.29, pp.None, 2013, https://doi.org/10.1016/j.smim.2017.01.002