DOI QR코드

DOI QR Code

Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis

수열합성 공정을 이용한 금속 다공체의 나노 산화물 형성

  • Park, H.J. (Department of Advanced Materials Engineering, Sejong University) ;
  • Kim, Y.S. (Department of Advanced Materials Engineering, Sejong University) ;
  • Hong, S.H. (Department of Advanced Materials Engineering, Sejong University) ;
  • Kim, J.T. (Department of Advanced Materials Engineering, Sejong University) ;
  • Cho, J.Y. (Department of Advanced Materials Engineering, Sejong University) ;
  • Lee, W.H. (Department of Advanced Materials Engineering, Sejong University) ;
  • Kim, Ki Buem (Department of Advanced Materials Engineering, Sejong University)
  • 박혜진 (세종대학교 나노.신소재공학과) ;
  • 김영석 (세종대학교 나노.신소재공학과) ;
  • 홍성환 (세종대학교 나노.신소재공학과) ;
  • 김정태 (세종대학교 나노.신소재공학과) ;
  • 조재영 (세종대학교 나노.신소재공학과) ;
  • 이원희 (세종대학교 나노.신소재공학과) ;
  • 김기범 (세종대학교 나노.신소재공학과)
  • Received : 2015.08.14
  • Accepted : 2015.08.26
  • Published : 2015.08.28

Abstract

Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ metallic glass powder under of 0.2 kJ generated by a $450{\mu}F$ capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at $150^{\circ}C$ for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped $Fe_2O_3$ and needle-shaped $Fe_3O_4$ are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.

Keywords

References

  1. A. Inoue: Acta Mater., 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6
  2. W. L. Johnson: Science and Technology MRS Bull., 24 (1999) 42. https://doi.org/10.1557/S0883769400053252
  3. J. M. Park, D. H. Kim, M. Stoica, M. Mattern, R. Li and J. Eckert: J. Mater. Res., 26 (2011) 2080. https://doi.org/10.1557/jmr.2011.202
  4. J. M. Park, D. H. Kim, K. B. Kim, E. Fleury, M. H. Lee, W. T. Kim and J. Eckert: J. Mater. Res., 23 (2008) 2984. https://doi.org/10.1557/JMR.2008.0357
  5. Y. Wu, Y. Xiao, G. Chen, C. T. Liu and Z. Lu: Adv. Mater., 22 (2010) 2770. https://doi.org/10.1002/adma.201000482
  6. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou and W. L. Johnson: Nature, 415 (2008).
  7. C. P. Kim, R. Rush, A. Masuhr, H. Choi-Yim and W. L. Johnson: Appl. Phys. Lett., 79 (2001) 1456. https://doi.org/10.1063/1.1390317
  8. C. Fan, R. T. Ott and T. C. Hugnagel: Appl. Phys. Lett., 81 (2002) 1020. https://doi.org/10.1063/1.1498864
  9. T. Wada, A. Inoue and L. Greer: Appl. Phys. Lett., 86 (2005) 251907-3. https://doi.org/10.1063/1.1953884
  10. J. Schroers, C. Veazey, M. D. Demetriou and W. L. Johnson: J. Appl. Phys., 96 (2004) 7723 https://doi.org/10.1063/1.1818355
  11. A. H. Brothers and D. C. Dunand: Appl. Phys. Lett., 84 (2004) 1108. https://doi.org/10.1063/1.1646467
  12. A. H. Brothers, D. C. Dunand, Q. Zheng and J. Xu: J. Appl. Phys., 102 (2007) 023508-6. https://doi.org/10.1063/1.2756043
  13. W. H. Lee and C. Y. Hyun: J. Mater. Process. Tech., 189 (2007) 219. https://doi.org/10.1016/j.jmatprotec.2007.01.025
  14. J. Y. Cho, G. A. Song, H. S. Choi, Y. H. Kim, T. S. Kim, M. H. Lee, H. S. Lee, H. J. Kim, J. K. Lee, E. Fleury, Y. Seo and K. B. Kim: J. Alloys Compd., 536 (2012) S78. https://doi.org/10.1016/j.jallcom.2011.10.088
  15. J. Y. Cho, J. S. Shin, Y. J. Jo, J. K. Lee, M. H. Lee, H. S. Lee, W. H. Lee and K. B. Kim: J. Alloys Compd., 509S (2001) S184.
  16. A. L. Greer and E. Ma: MRS Bull., 32 (2007) 611. https://doi.org/10.1557/mrs2007.121
  17. K. Byrappa and M. Yoshimura: Handbook of hydrothermal technology. Noyes Publications, New Jersey, USA, 2001.
  18. K. Byrappa and T. Adschiri: Prog. Cryst. Growth Charact. Mater., 53 (2007) 117. https://doi.org/10.1016/j.pcrysgrow.2007.04.001
  19. A. Inoue: Acta Mater., 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6
  20. D. D. Stark, R. Weissleder, G. Elizondo, P. F. Hahn, S. Saini, L. E. Todd, J. Wittenberg and J. T. Ferrucci: J. Radiology, 168 (1988) 297. https://doi.org/10.1148/radiology.168.2.3393649
  21. H. Lee, M. K. Yu, S. Park, S. Moon, J. J. Min, Y. Y. Jeong, H. W. Kang and S. Jon: J. Am. Chem. Soc., 129 (2007) 12739. https://doi.org/10.1021/ja072210i
  22. J. Chen, L. Xu, W. Li and X. Gou: Adv. Meter., 17 (2005) 582. https://doi.org/10.1002/adma.200401101
  23. Y. W. Cheon, Y. J. Jo, C. M. Lee, H. S. Jang, K. B. Kim and W. H. Lee: Mater. Sci. Eng. A., 467 (2007) 89. https://doi.org/10.1016/j.msea.2007.02.076
  24. Y. J. Jo, C. M. Lee, H. S. Jang, N. S. Lee, J. H. Suk and W. H. Lee: J. Mater. Process. Tech., 194 (2007) 121. https://doi.org/10.1016/j.jmatprotec.2007.04.102
  25. J. H. Lee, H. J. Park, S. H. Hong, J. T. Kim, W. H. Lee, J. M. Park and K. B. Kim: Mat. & Des., 60 (2014) 66. https://doi.org/10.1016/j.matdes.2014.03.051