• 제목/요약/키워드: porous aluminum

검색결과 177건 처리시간 0.027초

알루미늄 다공성소재를 이용한 RFID Tag용 열차폐부품 개발 (Development of Heat Shielding Part for RFID Tag using Porous Aluminum Alloy)

  • 방제오;이효수;정택균;이민하;김범성;정승부
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.135-140
    • /
    • 2011
  • The RFID (Radio-Frequency Identification) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. Some RFID tags have been used in severe environment of temperature ranged from $200^{\circ}C$ to $250^{\circ}C$ for a long time and may cause serious problems such as signal error, short life cycle and explosion. Conventionally, the RFID tags for high temperature applications consisted of Fe-alloy housing part, ceramic powder and RFID sensor. However, it has disadvantage of heavy weight, signal noise and heat shield capability. In this study, we newly applied the aluminum porous materials fabricated by polymer leaching process into RFID tags in order to improve heat shielding ability, and compared the properties of RFID tag inserted by aluminum porous with the conventional one.

흡음재의 음향특성 예측에 의한 밀폐계의 내부 소음저감 (Interior Noise Reduction of Enclosure Using Predicted Characteristics of Absorber)

  • 이기연;심현진;이정윤;오재응
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.60-66
    • /
    • 2006
  • For the purpose of finding out the sound field characteristics in a rectangular cavity, analytical and experimental studies are performed with white noise input. Two-microphone impedance tube method is used to measure the impedances of foamed aluminum. Foamed aluminum is well known metallic porous material which has excellent properties of light weight and high absorbing performance. And predicted impedances of foamed aluminum are compared with measured impedances. The predicted acoustical parameters are applied to the theoretical analysis to predict sound pressure field in the cavity. The measured sound absorption effects are compared with the predicted values for both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

  • Sakairi, M.;Goyal, V.
    • Corrosion Science and Technology
    • /
    • 제15권4호
    • /
    • pp.166-170
    • /
    • 2016
  • The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

알루미늄 1050 합금의 양극산화 시간에 따른 산화피막 성장 거동 및 부식 손상 연구 (Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy)

  • 최예지;정찬영
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.282-289
    • /
    • 2022
  • Aluminum 1000 series alloy, a pure aluminum with excellent workability and weldability, is mainly used in the ship field. Aluminum alloy can combine with oxygen in the atmosphere and form a natural oxide film with high corrosion resistance. However, its corrosion resistance and durability are decreased when it is exposed to a harsh environment for a long period of time. For solving this problem, a porous oxide film can be formed on the surface using an anodizing treatment method, a typical surface technique among various methods. In this study, aluminum 1050 alloy was anodized for 2 minutes, 6 minutes, and 10 minutes. The structure and shape of the oxide film were then analyzed to determine the corrosion resistance according to the thickness of the oxide film that changed depending on working condition using 15 wt% NaCl. After it was immersed in NaCl solution for 1, 5, and 10 days, corrosion damage was observed. Results confirmed that the thickness of the oxide film increased as the anodization time became longer. The depth of surface damage due to corrosion became deeper when the film was immersed in the 15 wt% NaCl solution for a longer period of time.

Electrochemical Fabrication of CdS/CO Nanowrite Arrays in Porous Aluminum Oxide Templates

  • Yoon, Cheon-Ho;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1519-1523
    • /
    • 2002
  • A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

알루미늄 廢드로스를 活用한 세라믹 多孔體의 製造 (The Preparation of porous ceramic material from aluminum waste dross)

  • 김기석;박제현;박재구
    • 자원리싸이클링
    • /
    • 제14권2호
    • /
    • pp.19-27
    • /
    • 2005
  • 알루미늄 폐드로스를 이용한 다공성 경량세라믹의 제조조건을 제시함으로서 폐드로스의 요업용 원료로서의 재활용가능성을 살펴보았다. 알루미늄 폐드로스의 전처리 과정으로 4~7번의 수세와 900$^{\circ}%의 배소를 수행하여 수세와 배소 특성을 살펴보았다. 배소 후 드로스는 XRD분석에 의해 스피넬상이 형성되었다. 배소된 폐드로스는 슬러리 상태로 분쇄되었다. 분쇄시 슬러리의 분산성을 확보하여 고농도의 슬러리를 제조하기 위해 분산조제 첨가량에 따른 분산특성을 살펴보았다. 다공체는 슬러리 발포법을 사용하여 제조되었다. 발포조제로 계면활성제가 첨가되었으며 상온에서 자기체적의 2-3배로 발포된 후 성형-건조되었다. 3배 발포시켜 제조된 다공체는 기공율이 약 84%, bulk 밀도는 약 0.59 g/cm$^3$로 측정되었고, 50~500 ${\mu}m$ 크기범위의 기공들이 형성되었다. 화상해석결과 다공체 표면의 평균기공크기는 약 200 ${\mu}m$ 였다. 알루미늄 폐드로스 성형체는 1150$^{\circ}C-1250$^{\circ}C에서 소결되었으며, SEM관찰결과 1200$^{\circ}C에서 소결특성이 양호한 것으로 나타났다.

다공성 산화알루미늄의 표면코팅에 따른 트라이볼로지적 특성연구 (Study on Tribological Behavior of Porous Anodic Aluminum Oxide with respect to Surface Coating)

  • 김영진;김현준
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.275-281
    • /
    • 2017
  • In this work, we have fabricated anodic aluminum oxide (AAO) with ordered nanoscale porosity through an anodization process. We deposited gold and nano-organic thin films on the porous AAO surface to protect its structure and reduce friction. We investigated the tribological characteristics of the porous AAO with respect to the protective surface coatings using tribometers. While investigating the frictional characteristics of the samples by applying normal forces of the order of micro-Newton, we observed that AAO without a protective coating exhibits the highest friction coefficient. In the presence of protective surface coatings, the friction coefficient decreases significantly. We applied normal forces of the order of milli-Newton during the tribotests to investigate the wear characteristics of AAO, and observed that AAO without protective surface coatings experiences severe damage due to the brittle nature of the oxide layer. We observed the presence of several pieces of fractured particles in the wear track; these fractured particles lead to an increase in the friction. However, by using surface coatings such as gold thin films and nano-organic thin films, we confirmed that the thin films with nanoscale thickness protect the AAO surface without exhibiting significant wear tracks and maintain a stable friction coefficient for the duration of the tribotests.

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

다공성 알루미나 박막을 이용한 Au dot-arrays의 제작에 관한 연구 (A Study for the fabrication of Au dot-arrays using porous alumina film)

  • 정경한;박상현;신훈규;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.922-925
    • /
    • 2003
  • The interest of self-organization materials that have uniform and regular structure in nano scale has been grown due to their utilization in various fields of nanotechnology. An attractive candidate among these materials is anodic aluminum oxide film, which are formed by anodization of aluminum in an appropriate acid solution. The anodic aluminum oxide film has a highly ordered porous structure with very uniform and nearly parallel pores that can be organized in an almost precise close-packed hexagonal structure. In this study, we attempt to make Au dot arrays, which were fabricated using anodic aluminum oxide film as an evaporation mask. The Au dot arrays have a uniform sized dots and spacing to its neighbors and the average diameter of Au dots is about 60 nm corresponding to them of the mask.

  • PDF

기공성 알루미나 산화 피막을 이용한 나노 금속화합물의 제조 (Fabrication of Nano Metal Compounds Using Porous Aluminum Oxide Films)

  • 오한준;정용수;지충수
    • 한국표면공학회지
    • /
    • 제43권5호
    • /
    • pp.248-254
    • /
    • 2010
  • Porous $Al_2O_3$ film can be utilized as template for fabrication of nano-structured materials. Porous anodic alumina layer as template was prepared by anodization of aluminum in oxalic acid, and the pore diameter and barrier-type alumina layer can be controlled for proper anodizing parameter by widening process in $H_3PO_4$ solution. The $SiO_2$ nanodot and Ni nanowire was fabricated using anodic alumina template and their characteristics were investigated using SEM and TEM with EDS. Especially the growth mechanism of $SiO_2$ nanodot in alumina membrane compared with thinning of the alumina barrier layer during anodization was also investigated.