• Title/Summary/Keyword: porous FG

Search Result 136, Processing Time 0.026 seconds

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.717-728
    • /
    • 2023
  • The effect of temperature dependent material properties on the free vibration of FG porous beams is investigated in the present paper. A quasi-3D shear deformation solution is used involves only three unknown function. The mechanical properties which are considered to be temperature-dependent as well as the porosity distributions are assumed to gradually change along the thickness direction according to defined law. The beam is supposed to be simply supported and lying on variable elastic foundation. The differential equation system governing the free vibration behavior of porous beams is derived based on the Hamilton principle. Navier's method for simply supported systems is then used to determine and compute the frequencies of FG porous beam. The results of the present formulation are validated by comparing with those available literatures. Finally, the effects of several parameters such as porosity distribution and the parameters of variable elastic foundation on the free vibration behavior of temperature-dependent FG beams are presented and discussed in detail.

Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method

  • Emdadi, Mohsen;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.109-123
    • /
    • 2019
  • In this article, the free vibration analysis of annular sandwich plates with various functionally graded (FG) porous cores and carbon nanotubes reinforced composite (CNTRC) facesheets is investigated based on modified couple stress theory (MCST) and first order shear deformation theories (FSDT). The annular sandwich plate is composed of two face layers and a functionally graded porous core layer which contains different porosity distributions. Various approaches such as extended mixture rule (EMR), Eshelby-Mori-Tanaka (E-M-T), and Halpin-Tsai (H-T) are used to determine the effective material properties of microcomposite circular sandwich plate. The governing equations of motion are extracted by using Hamilton's principle and FSDT. A Ritz method has been utilized to calculate the natural frequency of an annular sandwich plate. The effects of material length scale parameters, boundary conditions, aspect and inner-outer radius ratios, FG porous distributions, pore compressibility and volume fractions of CNTs are considered. The results are obtained by Ritz solutions that can be served as benchmark data to validate their numerical and analytical methods in the future work and also in solid-state physics, materials science, and micro-electro-mechanical devices.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory

  • Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.117-127
    • /
    • 2022
  • This study investigates the wave propagation in porous functionally graded (FG) sandwich plates subjected to hygrothermal environments. A new simple three-unknown first-ordershear deformation theory (FSDT) incorporating an integral term is utilized in this paper. Only three unknowns are used to formulate the governing differential equation by applying the Hamilton principle. The FG layer of the sandwich plate is modeled using the power-law function with evenly distributed porosities to represent the defects of the manufacturing process. The plate is subjected to nonlinear hygrothermal changes across the thickness. The effects of the power-law exponent, core to thickness ratios, porosity volume, and the relations between volume fraction and wave properties of porous FG plate under the hygrothermal environment are investigated. The results showed that the waves' phase velocities increase linearly with the waves number in the FGM plate. The porosity of the FG materials plate has a noticeable impact on the phase velocity when considering the high ratios of the core layer. It has a negligible effect on small core layers. Finally, it is observed that changing temperatures and moistures do not influence the relationship between the power law and the phase velocity.

Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections

  • Ahmed, Ridha A.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2019
  • This research is concerned with post-buckling investigation of nano-scaled beams constructed from porous functionally graded (FG) materials taking into account geometrical imperfection shape. Hence, two types of nanobeams which are perfect and imperfect have been studied. Porous FG materials are classified based on even or uneven porosity distributions. A higher order nonlinear refined beam theory is used in the present research. Both perfect and imperfect nanobeams are formulated based on this refined theory. A detailed study is provided to understand the effects of geometric imperfection, pore distribution, material distribution and small scale effects on buckling of FG nanobeams.

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin;Liu, Hai-Bo;Karami, Behrouz
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.