References
- Abdalla, J.A., Ibrahim, A.M. (2006), "Development of a discrete Reissner-Mindlin element on Winkler foundation", Finite Elem. Anal. Des., 42(8-9), 740-748. https://doi.org/10.1016/j.finel.2005.11.004.
- Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
- Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res, 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
- Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/SCS.2021.39.6.811.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14),1644-1655. https://doi.org/10.1177/1077546320947302.
- Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. HTTPS://DOI.ORG/10.22055/JACM.2017.21540.1107.
- Alabas, M.B. and Majid, W.I. (2020), "Thermal buckling analysis of laminated composite plates with general elastic boundary supports", J. Eng., 26(3), 1-17. https://doi.org/10.31026/j.eng.2020.03.01.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001.
- Ali, A.H. and Majeed. W.I. (2021), "Transient Analysis of Laminated composite Plate using New Higher Order Shear Deformation Theory", IOP Conf. Series: Materials Science and Engineering, 1094-012040. http://doi.org/10.1088/1757-899X/1094/1/012040.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 669-689. http://dx.doi.org/10.12989/sss.2021.27.4.669.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.
- Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. http://doi.org/10.1016/j.tws.2018.01.007.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
- Avcar, M., Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
- Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Eur. J. Mech. A Solids, 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001.
- Beg, M.S., Khalid, H.M., Yasin, M.Y. and Hadji, L. (2021), "Exact third-order static and free vibration analyses of functionally graded porous curved beam", Steel Compos. Struct., 39(1), 1-20. https://doi.org/10.12989/SCS.2021.39.1.001.
- Behravan Rad, A. and Alibeigloo, A. (2013), "Semi-analytical solution for the static analysis of 2D functionally graded solid and annular circular plates resting on elastic foundation", Mech. Adv. Mater. Struct., 20(7), 515-528. DOI:10.1080/15376494.2011.634088.
- Behravan Rad, A. and Shariyat, M. (2015), "Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations", Compos. Struct., 125, 558-574. https://doi.org/10.1016/j.compstruct.2015.02.049.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
- Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2019), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46 (1), 194-203. https://doi.org/10.2514/1.32490.
- Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
- Chen, D., Kitipornchai, S. and Yang, J. (2017a), "Dynamic response and energy absorption of functionally graded porous structures", Mater. Des., 140, 473-487. https://doi.org/10.1016/j.matdes.2017.12.019.
- Chen, D., Yang, J. and Kitipornchai, S. (2017b), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos Sci Technol, 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
- Chen, S., Zhang, Q. and Liu, H. (2021), "Dynamic response of double-FG porous beam system subjected to moving load", Eng. Comput., https://doi.org/10.1007/s00366-021-01376-w.
- Chucheepsakul, S. and Chinnaboon, B. (2002), "An alternative domain/boundary element technique for analyzing plates on two-parameter elastic foundations", Eng. Anal Boundary Elem., 26, 547-555. https://doi.org/10.1016/S0955-7997(02)00007-3.
- Civalek, O. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSCHDQ methods", Appl Math Model., 31(3), 606-624. https://doi.org/10.1016/j.apm.2005.11.023.
- Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.
- Derbale, A., Bouazza, M. and Benseddiq, N. (2021), "Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theory", Iran. J. Sci. Technol., Transactions Civil Eng., 45(1), 89-98. https://doi.org/10.1007/s40996-020-00417-6.
- Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. http://dx.doi.org/10.12989/anr.2020.8.1.083.
- Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2018), "Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads", Europ. Phys. J. Plus, 133(9), 1-11. https://doi.org/10.1140/epjp/i2018-12152-5.
- Farzaneh Joubaneh, E., Mojahedin, A., Khorshidvand, A.R. and Jabbari, M. (2015), "Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load", J. Sandwich Struct. Mater., 17(1), 3-25. https://doi.org/10.1177/1099636214554172.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
- Feyzi, M.R. and Khorshidvand, A.R. (2017), "Axisymmetric postbuckling behavior of saturated porous circular plates", Thin-Wall. Struct., 112, 149-158. https://doi.org/10.1016/J.TWS.2016.11.026.
- Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/ANR.2021.10.3.281.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. http://dx.doi.org/10.12989/sem.2019.71.1.089.
- Hammed, M.B. and Majeed, W.I. (2019), "Free vibration analysis of laminated composite plates with general boundary elastic supports under initial thermal load", Al-Khwarizmi Eng. J., 15(4), 23-32. https://doi.org/10.22153/kej.2019.09.004.
- Han, J.B. and Liew, K.M. (1997), "Numerical differential quadrature method for Reissner/Mindlin plates on twoparameter foundations", Int. J. Mech. Sci., 39(9), 977-989. https://doi.org/10.1016/S0020-7403(97)00001-5.
- Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/SCS.2021.40.1.139.
- Ibrahim, W.M. and Ghani, R.A. (2017), "Free vibration analysis of laminated composite plates with general elastic boundary supports", J. Eng., 23(4), 100-124. https://doi.org/10.31026/j.eng.2017.04.07
- Keleshteri, M.M. and Jelovica, J. (2021), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., https://doi.org/10.1007/s00366-021-01553-x.
- Khorshidvand, A.R., Farzaneh Joubaneh, E., Jabbari, M. and Eslami, M.R. (2014), "Buckling analysis of a porous circular plate with piezoelectric sensor actuator layers under uniform radial compression", Acta Mech., 225, 179-193. https://doi.org/10.1007/s00707-013-0959-2.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Li, X., Wang, T., Liu, F. and Zhu, Z. (2021), "Computer simulation of the nonlinear static behavior of axially functionally graded microtube with porosity", Adv. Nano Res., 11(4), 437-451. https://doi.org/10.12989/ANR.2021.11.4.437.
- Madeh, A.R. and Majeed, W.I. (2021), "Effect of boundary conditions on thermal buckling of laminated composite shallow shell", Mater. Today: Proceedings, 42, 2397-2404. https://doi.org/10.1016/j.matpr.2020.12.501.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E., & Ozkilic, Y. O. (2021), "Cyclic response of selfcentering SRC walls with frame beams as boundary", Steel and Composite Structures, 40(2), 157-173. https://doi.org/10.12989/SCS.2021.40.2.157.
- Majeed, W. I. (2021), "Thermal buckling analysis of cross-ply plates based on new displacement field", Journal of Engineering Research, 9(3 B), 302-316. DOI: 10.36909/jer.v9i3B.8494.
- Majeed, W.I. and Abed, Z.A.K. (2019), "Buckling and pre stressed dynamics analysis of laminated composite plate with different boundary conditions", Al-Khwarizmi Eng. J., 15(1), 46-55. https://doi.org/10.22153/kej.2019.07.002.
- Majeed, W.I. and Tayeh, F.H. (2015), "Stability and dynamic analysis of laminated composite plates", J. Eng., 21(8), 139-159. https://doi.org/10.31026/j.eng.2015.08.09
- Majeed, W.I. and Ebtihal A.S. (2017), "Buckling Analysis of Angle Ply Plates Using New Displacement Function", IJRTESS.
- Majeed, W.I. and Ebtihal A.S. (2018), "Buckling and pre stressed vibration analysis of laminated plates using new shear deformation", IOP Conf. Series: Materials Science and Eng., 454, https://doi.org/10.1088/1757-899X/454/1/012006.
- Mantari J.L., Soares, C.G. (2012b), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos. Struct. 94(6), 1991 -2000. https://doi.org/10.1016/j.compstruct.2012.01.005.
- Mantari, J.L. and Soares, C.G. (2012a), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct. 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.
- Mantari, J.L. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B: Eng., 45, 268-281. DOI:10.1016/J.COMPOSITESB.2012.05.036.
- Mehar, K. and Panda, S. K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mindlin, R.D. (1951), "Thickness-shear and flexural vibrations of crystal plates", J. Appl. Phys., 22(3), 316-323. https://doi.org/10.1063/1.1699948.
- Mirjavadi, S. S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. http://dx.doi.org/10.12989/anr.2020.8.2.149.
- Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. http://dx.doi.org/10.12989/anr.2020.8.1.069.
- Mojahedin, A., Farzaneh Joubaneh, E. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mech., 225, 3437-3452. https://doi.org/10.1007/s00707-014-1153-x.
- Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
- Ozgan, K. and Daloglu, A.T. (2007), "Alternative plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86. https://doi.org/10.12989/SEM.2007.26.1.069.
- Pabst, W. and Gregorova, E. (2004a), "Effective elastic properties of alumina-zirconia composite ceramics: Part 2. Micromechanical modeling", CeramicsSilikaty, 48, 14-23.
- Pabst, W. and Gregorova, E. (2004b), "Mooney-type relation for the porosity dependence of the effective tensile modulus of ceramics", J. Mater. Sci., 39, 3213-3215. https://doi.org/10.1023/B:JMSC.0000025863.55408.c9.
- Pabst, W. and Gregorova, E. (2014c), "Youngs modulus of isotropic porous materials with spheroidal pores", J. Eur. Ceram. Soc., 34, 3195-3207. https://doi.org/10.1016/j.jeurceramsoc.2014.04.009.
- Priyanka, R., Twinkle, C.M. and Pitchaimani, J. (2021), "Stability and dynamic behavior of porous FGM beam: influence of graded porosity, graphene platelets, and axially varying loads", Eng. Comput., https://doi.org/10.1007/s00366-021-01478-5.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Threedimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control, 26(19-20), 1627-1645. https://doi.org/10.1177/1077546320902340.
- Rahmani, M. and Mohammadi, Y. (2021), "Vibration of two types of porous FG sandwich conical shell with different boundary conditions", Struct. Eng. Mech., 79(4), 401-413. https://doi.org/10.12989/SEM.2021.79.4.401.
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. http://dx.doi.org/10.12989/scs.2019.33.6.865.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. appl. Mech., A69-A77. https://doi.org/10.1115/1.4009435.
- Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
- Rezaei, A.S. and Saidi, A.R. (2016), "Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. B, 91, 361-370. https://doi.org/10.1016/j.compositesb.2015.12.050.
- Rezaei, A.S. and Saidi, A.R. (2017), "Buckling response of moderately thick fluid-infiltrated porous annular sector plates", Acta Mech., 228, 3929-3945. https://doi.org/10.1007/s00707-017-1908-2.
- Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01052-5.
- Safarpour, M., Rahimi, A., Alibeigloo, A., Bisheh, H. and Forooghi, A. (2021), "Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions", Mech. Based Des. Struct. Machines, 49(5), 707-737. https://doi.org/10.1080/15397734.2019.1701491.
- Sahnoun, M., Ouinas, D., Benderdouche, N., Bouazza, M. and Vina, J. (2013), "Hygrothermal effect on stiffness reduction modeling damage evolution in cross-ply composite laminates", Adv. Mater. Res., 629, 79-84. https://doi.org/10.4028/www.scientific.net/AMR.629.79.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
- Shen, H.S., Yang, J. and Zhang, L. (2001), "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations", J. Sound. Vib., 244(2), 299-320. https://doi.org/10.1006/jsvi.2000.3501.
- Shen, H.S. (2000), "Nonlinear analysis of simply supported Reissner-Mindlin plates subjected to lateral pressure and thermal loading and resting on two-parameter elastic foundations", Eng. Struct., 22(11), 1481-1493. https://doi.org/10.1016/S0141-0296(99)00086-3.
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model. 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008.
- Thai, H.T. and Choi, D.H. (2013), "A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52. https://doi.org/10.1016/j.ijmecsci.2013.03.017.
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.
- Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. https://doi.org/10.12989/SEM.2021.77.2.217.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Winkler, E. (1867), "Die Lehre von der Elastizitat and Festigkeit", Prag. Dominicus, 1867.
- Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
- Xiang, Y. (2003), "Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations", Int. J. Mech. Sci., 45(6-7), 1229-1244. https://doi.org/10.1016/S0020-7403(03)00141-3.
- Yahea, H.T. and Majeed, W.I. (2021), "Thermal buckling of laminated composite plates using a simple four variable plate theory", J. Eng., 27(9), 1-19. https://doi.org/10.31026/j.eng.2021.09.01.
- Yang, B., Ding, H.J. and Chen, W.Q. (2012), "Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported", Appl. Math. Model., 36(1), 488-503. https://doi.org/10.1016/j.apm.2011.07.020.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Yas, M.H. and Tahouneh, V. (2012), "3-D Free vibration analysis of thick functionally graded annular plates on Pasternak elastic foundation via differential quadrature method (DQM)", Acta. Mech., 223(1), 43-62. https://doi.org/10.1007/s00707-011-0543-6.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
- Yuksel, Y.Z. and Akbas, S.D. (2021), "Hygrothermal stress analysis of laminated composite porous plates", Struct. Eng. Mech., 80(1), 1-13. https://doi.org/10.12989/SEM.2021.80.1.001.
- Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech. 77, 197-214. https://doi.org/10.1007/s00419-006-0084-y.
- Zenkour, A.M., Allam, M.N.M. and Radwan, A.F. (2014), "Effects of transverse shear and normal strains on FG plates resting on elastic foundations under hygro-thermo-mechanical loading", Int. J. Appl. Mech. 6(5), 1450063. https://doi.org/10.1142/S175882511450063X.
- Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Threedimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Methods. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915.