• 제목/요약/키워드: porous $Al_2O_3$

검색결과 190건 처리시간 0.021초

Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향 (Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film)

  • 이승준;장석기;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구 (Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material)

  • 신보성;이정한
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

Sinter/HIP 공정으로 제조한 SiC whisker/$Al_2O_3$ 복합재료의 소결 및 기계적 물성에 관한 연구 (A Study on Sintering and mechanical Properties of Sinter/HIPed SiC Whisker/$Al_2O_3$ Composite)

  • 이채현;김종옥;김종희
    • 자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.53-59
    • /
    • 1995
  • Alumina 세라믹스의 기계적 물성 증진을 위하여 SiC whisker로 강화시키고 소결 조제 및 소결 온도의 영향을 고찰하였다. Whiker의 소결억제 효과로 인하여 고상소결을 촉진하는 MgO나 $TiO_2$를 소결조제로 사용한 경우에서는 치밀한 소결체를 얻을 수 없었으나, 액상을 형성하는 $Y_2O_3$를 2wt% 첨가한 경우에 양호한 소결밀도를 얻을 수 있었다. whisker 첨가에 의한 기지의 기계적 물성의 증진 효과도 함께 얻을 수 있었다. 강화 효과는 보강재인 whiker 자체의 보강 효과와 함께 입성장 억제 효과가 복합적으로 작용한 것으로 판단되었다. 소결체를 HIP 처리한 경우에는 거의 이론 밀도까지 이르는 아주 치밀한 소결체의 제조가 가능하였으며, 기계적 물성은 상압소결 후의 결과에 비하여 향상됨을 확인할 수 있었다.

  • PDF

Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성 (Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition)

  • 안하림;백성호;박일규;안효진
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

다공성 실리콘 산화막의 C-V 특성 (C-V Characteristics of Oxidized Porous Silicon)

  • 김석;최두진
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.572-582
    • /
    • 1996
  • 전류밀도, 70mA/cm2와 전류인가시간, 5초, 10초 조건의 양극반응으로 다공성 실리콘을 제작하여 800~110$0^{\circ}C$에서 열산화시킨 후 AI 전극을 증착시켜 만든 MOS(Metal Oxide Semiconductor) 구조의 C-V(Capacilance-Voltage) 특성을 조사하였다. 800, 90$0^{\circ}C$의 저온과 20~30분 이내의 단시간 산화에서는 산화막의 유전상수가 보통의 열산화막보다 크게 나타나고, 산화온도가 110$0^{\circ}C$의 고온과 60분 이상의 장시간 산화의 경우에는 3.9에 근접한 값을 갖는다. 이는 다공성 실리콘 산화막내에 존재하는 산화되지 않은 silicon들에 의한 효과와 표면적 증가에 의한 정전용량의 증가 효과가 복합적으로 작용하는 것이 그 원인이라 생각된다.

  • PDF

수소 분리용 팔라듐계 분리막의 세라믹 코팅 영향 (Ceramic barrier coated Pd hydrogen membrane on a porous nickel support)

  • 이춘부;이성욱;박진우;김광호;황경란;박종수;김성현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.114.1-114.1
    • /
    • 2010
  • A highly performed Pd-based hydrogen membrane has prepared successfully on a modified porous nickel support. The porous nickel support modified by impregnation method of $Al(NO_3)_3{\cdot}9H_2O$ (Aldrich Co.) over the nickel powder showed a strong resistance to hydrogen embrittlement and thermal stability. Plasma surface modification treatment was introduced as a pre-treatment process instead of conventional HCl wet activation. Ceramic barrier was coated on the external surface of the prepared nickel supports to prevent intermetallic diffusion and to enhance the affinity between the support and membrane. Palladium and copper were deposited at thicknesses of $4\mu}m$ and $0.5{\mu}m$, respectively, on a barrier-coated support by DC sputtering process. The permeation measurement was performed in pure hydrogen at $400^{\circ}C$. The single gas permeation of our membrane was two times higher than that of the previous membrane which do not have ceramic barrier.

  • PDF

전기화학증착법에 의한 $CeO_2$계 고체전해질 박막의 제조 (Preparation of $CeO_2$ Based Solid Electrolyte Thin Films by Electrochemical Vapor Deposition)

  • 박동원;김대룡
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1067-1073
    • /
    • 1997
  • The yttria doped ceria (YDC) thin films were fabricated by electrochemical vapor deposition on the porous $\alpha$-Al2O3 substrate. The growth rates of the films obeyed a parabolic rate law, which constant was 259.0 $m^2$/hr at 120$0^{\circ}C$. As deposition temperature (above 110$0^{\circ}C$) increased, dense thin films were enhanced. Mole fraction of XYC13 had an effect upon surface morphologies. Electrical conductivity was increased with deposition temperature. The conductivity of YDC film prepared at XYC13=7.9$\times$10-2 was about 0.097 S/cm at 104$0^{\circ}C$ and the activation energy of conduction was calculated to be 26.6 kcal/mol.

  • PDF

Highly-closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming

  • Jang, Woo Young;Seo, Dong Nam;Park, Jung Gyu;Kim, Hyung Tae;Lee, Sung Min;Kim, Suk Young;Kim, Ik Jin
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.604-609
    • /
    • 2016
  • This study reports on wet-foam stability with respect to porous ceramics from a particle-stabilized colloidal suspension that is achieved through the addition of polymethyl methacrylate (PMMA) using a wet process. To stabilize the wet foam, an initial colloidal suspension of $Al_2O_3$ was partially hydrophobized by the surfactant propyl gallate (2 wt.%) and $SiO_2$ was added as a stabilizer. The influence of the PMMA content on the bubble size, pore size, and pore distribution in terms of the contact angle, surface tension, adsorption free energy, and Laplace pressure are described in this paper. The results show a wet-foam stability of more than 83%, which corresponds to a particle free energy of $2.7{\times}10^{-12}J$ and a pressure difference of 61.1 mPa for colloidal particles with 20 wt.% of PMMA beads. It was possible to control the uniform distribution of the open/closed pores by increasing the PMMA content and by adding thick struts, leading to the achievement of a higher-stability wet foam for use in porous ceramics.

수화-소성법에 의한 $CA_2$클린커의 합성(I) : 합성에 미치는 온도의 영향 (Synthesis of $CA_2$-based Clinker by Hydration-Burning Method (I) : Effects of Temperature on Synthesis)

  • 송태웅;한기성
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.211-218
    • /
    • 1990
  • CA2-based clinker with highly activated surface and hydraulic properties was synthesized at a comparatively lowr temperature than that of conventional synthesis by "hydration-burning method". This consists of calcining the mixture of CaCO3 and Al2O3 to obtain a primary clinker, hydrating the primary clinker and reburning the hydrates to obtain final clinker. Burning of primary clinker above 1200℃ was necessary to eliminate free CaO in it and to obtain it's solid hydrate. However, rising the burning temperature above 1300℃ is ineffective due to the decrease in hydraulic properties of the primary clinker with the temperature. Hydration of primary clinker at the elevated temperature(>35℃) was required to obtain the hydrate with more porous structure and final clinker with more active surface. CA2 was formed and increased with temperature at above 1150℃, finally became a primary phase of the final clinker. However, burning at the temperature above 1300℃ resulted in reverse effect on the hydraulic properties of the final clinker due to rapid decrease in it's surface area with the temperature.

  • PDF

알루미나-아연붕규산염 유리를 이용한 저온 소결 다공성 세라믹스의 제조 및 특성 (Properties of Low Temperature Sintered Porous Ceramics from Alumina-Zinc Borosilicate Glass)

  • 김관수;송기영;박상엽;김신;김성진;윤상옥
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.609-614
    • /
    • 2009
  • The low-temperature preparation of porous ceramics was carried out using mixtures of alumina-zinc borosilicate (ZBS) glass. The compositions of alumina-ZBS glass mixture with PMMA pore-former were unfortunately densified. Because PMMA was evaporated below the softening point of ZBS glass ($588{^{\circ}C}$), the densification through the pore-filling caused by the capillary force might occur. Howerver, those with carbon possessed pores where carbon was evaporated above the softening point. The porous ceramic having 35% porosity was successively fabricated by the low-temperature sintering process below $900{^{\circ}C}$ using 45 vol% of alumina, 45 vol% ZBS of glass, and 10 vol% of carbon as starting materials.