• Title/Summary/Keyword: porosity reduction

Search Result 225, Processing Time 0.024 seconds

Elaboration of (Steel/Cemented Carbide) Multimaterial by Powder Metallurgy

  • Pascal, Celine;Chaix, Jean-Marc;Dutt, Ankur;Lay, Sabine;Allibert, Colette H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.291-292
    • /
    • 2006
  • A steel/cemented carbide couple is selected to generate a tough/hard two layers material. Sintering temperature and composition are deduced from phase equilibria, and experimental studies are used to determine optimal conditions. Liquid migration from the hard layer to the tough one is observed. Microstructure evolution during sintering of the tough material (TEM, SEM, image analysis) evidences coupled mechanisms of pore reduction and WC dissolution. Liquid migration, as well as interface crack formation due to differential densification are limited by suitable temperature and time conditions.

  • PDF

Linearized analysis of the internal pressures for a two-compartment building with leakage

  • Yu, Xianfeng;Gu, Ming;Xie, Zhuangning
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • The non-linear equations governing wind-induced internal pressures for a two-compartment building with background leakage are linearized based on some reasonable assumptions. The explicit admittance functions for both building compartments are derived, and the equivalent damping coefficients of the coupling internal pressure system are iteratively obtained. The RMS values of the internal pressure coefficients calculated from the non-linear equations and linearized equations are compared. Results indicate that the linearized equations generally have good calculation precision when the porosity ratio is less than 20%. Parameters are analyzed on the explicit admittance functions. Results show that the peaks of the internal pressure in the compartment without an external opening (Compartment 2) are higher than that in the compartment with an external opening (Compartment 1) at lower Helmholtz frequency. By contrast, the resonance peak of the internal pressure in compartment 2 is lower than that in compartment 1 at higher Helmholtz frequencies.

Preparation and characterization of inexpensive submicron range inorganic microfiltration membranes

  • Nandi, B.K.;Das, B.;Uppaluri, R.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.121-137
    • /
    • 2010
  • This work presents inexpensive inorganic precursor formulations to yield submicron range symmetric ceramic microfiltration (MF) membranes whose average pore sizes were between 0.1 and $0.4{\mu}m$. Incidentally, the sintering temperature used in this work was about 800 to $950^{\circ}C$ instead of higher sintering temperatures ($1100^{\circ}C$) that are usually deployed for membrane fabrication. Thermogravimetric (TGA) and X-Ray diffraction (XRD) analysis were carried out to evaluate the effect of temperature on various phase transformations during sintering process. The effect of sintering temperature on structural integrity of the membrane as well as pore size distribution and average pore size were evaluated using scanning electron microscopy (SEM) analysis. The average pore sizes of the membranes were increased from 0.185 to $0.332{\mu}m$ with an increase in sintering temperature from 800 to $950^{\circ}C$. However, a subsequent reduction in membrane porosity (from 34.4 to 19.6%) was observed for these membranes. Permeation experiments with both water and air were carried out to evaluate various membrane morphological parameters such as hydraulic pore diameter, hydraulic permeability, air permeance and effective porosity. Later, the membrane prepared with a sintering temperature of $950^{\circ}C$ was tested for the treatment of synthetic oily waste water to verify its real time applicability. The membrane exhibited 98.8% oil rejection efficiency and $5.36{\times}10^{-6}\;m^3/m^2.s$ permeate flux after 60 minutes of experimental run at 68.95 kPa trans-membrane pressure and 250 mg/L oil concentration. Based on retail and bulk prices of the inorganic precursors, the membrane cost was estimated to be $220 /$m^2$ and $1.53 /$m^2$, respectively.

Influence of porosity and cement grade on concrete mechanical properties

  • Huang, Jiandong;Alyousef, Rayed;Suhatril, Meldi;Baharom, Shahrizan;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Assilzadeh, Hamid
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • The given research focuses on examining the effect of relatively humidity (RH) and curing temperature on the hydrates as well as the porosity of calcium sulfoaluminate (CSA) cement pastes. Numerous tests, which consist of mercury intrusion porosimetry (MIP), thermosgravi metric (TG) and X-ray diffraction (XRD) were conducted. Various characterization techniques which include, scanning electron microscopy, Fourier transform microscopy along with X-ray diffraction evaluations were conducted on the samples to examine phase formation and crystallinity, morphology and microstructure along with bond formations and functional groups, respectively. During long-term study, the performance of concrete which consisted of limestone and flash-calcined was close to those from standard Portland cement concrete. Traditional classifications and methods of corrosion were widely used for the assessment of steel in concrete which may get employed to concrete which contains LC3 to recalibrate the range of polarization resistance for passitivity condition. For example, there is up to 79.5% and 146% respective flexural and compressive strengths. Moreover, they developed more advance electrical and thermo-mechanical performance with a substantial reduction in absorption of water of close to 400%. These advantages allow this research crucial to evaluate how these methods can be applied. Additionally, the research evaluates developed and more advanced cement preservation and repair techniques. The conclusion suggests concerted efforts by various stakeholders such as policy makers to enable low-carbon rates.

Bending analysis of porous microbeams based on the modified strain gradient theory including stretching effect

  • Lemya Hanifi Hachemi Amar;Abdelhakim Kaci;Aicha Bessaim;Mohammed Sid Ahmed Houari;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.225-238
    • /
    • 2024
  • In this paper, a quasi-3D hyperbolic shear deformation theory for the bending responses of a functionally graded (FG) porous micro-beam is based on a modified couple stress theory requiring only one material length scale parameter that can capture the size influence. The model proposed accounts for both shear and normal deformation effects through an illustrative variation of all displacements across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the micro-beam. The effective material properties of the functionally graded micro-beam are assumed to vary in the thickness direction and are estimated using the homogenization method of power law distribution, which is modified to approximate the porous material properties with even and uneven distributions of porosity phases. The equilibrium equations are obtained using the virtual work principle and solved using Navier's technique. The validity of the derived formulation is established by comparing it with the ones available in the literature. Numerical examples are presented to investigate the influences of the power law index, material length scale parameter, beam thickness, and shear and normal deformation effects on the mechanical characteristics of the FG micro-beam. The results demonstrate that the inclusion of the size effects increases the microbeams stiffness, which consequently leads to a reduction in deflections. In contrast, the shear and normal deformation effects are just the opposite.

Effects of Temperature and Water Pressure on the Material Properties of Granite & Limestone from Gagok Mine (온도와 수압이 가곡광산 화강암과 석회암의 물성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • This study focuses on having a temperature and water pressure effects on the change of material properties of rocks. Granite and limestone specimens from Gagok Mine were thermally treated with predetermined temperatures of 200, 300, 400, 500, 600 and $700^{\circ}C$ (excepting $700^{\circ}C$ for limestone) to estimate the reduction of material properties of rocks caused by heat. Specific gravity, effective porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus and Poisson's ratio for pre-heated specimens were measured. With increasing temperature, material properties of both rock specimens change sequentially. Significant changes of specific gravity, effective porosity and elastic wave porosity occur above $400^{\circ}C$ for granite and $300^{\circ}C$ for limestone. Changes of uniaxial compressive strength, Young's modulus and Poisson's ratio seem to be similar to those of physical properties. GSI of 500, 600 and $700^{\circ}C$ specimens inferred by using uniaxial compressive strength and Young's modulus of preheated granite specimens is found to be 81, 66 and 58 each. In case of pre-heated limestone specimens of 400, 500 and $600^{\circ}C$, the corresponding GSI is 76, 71 and 65 each. 500, 600 and $700^{\circ}C$ granite specimens and 400, 500 and $600^{\circ}C$ limestone specimens were pressurized to 7.5 MPa and their effective porosity, elastic wave velocity, uniaxial compressive strength and Young's modulus were measured. The average value of material properties (mentioned above) of 500, 600 and $700^{\circ}C$ granite specimens under water pressure compared with material properties of non-pressurized pre-heated specimens exhibits the reduction of 7.6, 11.3 and 14.9%, respectively. In case of 400, 500 and $600^{\circ}C$ limestone specimens under water pressure, the average value of material properties decreases by 8.2, 13.8 and 21.9%, respectively.

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung;Namgung, Yeon;Bhardwaj, Aman;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.

Effect of Gas Diffusion Layer on La0.8Sr0.2CoO3 Bifunctional Electrode for Oxygen Reduction and Evolution Reactions in an Alkaline Solution (알칼리용액에서 산소환원 및 발생반응에 대한 La0.8Sr0.2CoO3 전극의 기체확산층 영향)

  • LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;RIM, HYUNG-RYUL;LEE, HONG-KI;SHIM, JOONGPYO
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2016
  • Various commercially available gas diffusion layers (GDLs) from different manufacturers were used to prepare an air electrode using $La_{0.8}Sr_{0.2}CoO_3$ perovskite (LSCP) as the catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline solution. Various GDLs have different physical properties, such as porosity, conductivity, hydrophobicity, etc. The ORR and OER of the resulting cathode were electrochemically evaluated in an alkaline solution. The electrochemical properties of the resulting cathodes were slightly different when compared to the physical properties of GDLs. Pore structure and conductivity of GDLs had a prominent effect and their hydrophobicities had a minor effect on the electrochemical performances of cathodes for ORR and OER.

Fabrication of Porous Mo-Cu by Freeze Drying and Hydrogen Reduction of Metal Oxide Powders (금속산화물 분말의 동결건조 및 수소환원에 의한 Mo-Cu 다공체 제조)

  • Kang, Hyunji;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with $MoO_3-CuO$ powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at $-25^{\circ}C$, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at $750^{\circ}C$ and sintered at $1000^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that $MoO_3-CuO$ composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Modeling of Gas Permeability Coefficient for Cementitious Materials with Relation to Water Permeability Coefficient (시멘트계 재료의 기체 투기계수 해석 및 투수계수와의 상관성 연구)

  • Yoon, In-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.207-217
    • /
    • 2016
  • Permeability can not be expressed as a function of porosity alone, it depends on the porosity, pore size and distribution, and tortuosity of pore channels in concrete. There has been considerable interest in the relationship between microstructure and transport in cementitious materials, however, it is very rare to deal with the theoretical study on gas permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. In this study, fundamental approach to compute gas permeability of (non)carbonated concrete is suggested. For several compositions of cement pastes, the gas permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. For carbonated concrete, reduced porosity was calculated and this was used for calculating the gas permeability coefficeint. As the result of calculation of gas permeability for carbonated concrete, carbonation leaded to the significant reduction of gas permeability coefficient and this was obvious for concrete with high w/c ratio. Meanwhile, the relationship between gas permeability and water permeability has a linear function for cement paste based on Klinkenberg effect, however, which is not effective for concrete. For the evidence of the modeling, YOON's test was accomplished and these results were compared to each other.