DOI QR코드

DOI QR Code

Modeling of Gas Permeability Coefficient for Cementitious Materials with Relation to Water Permeability Coefficient

시멘트계 재료의 기체 투기계수 해석 및 투수계수와의 상관성 연구

  • 윤인석 (인덕대학교 건설정보공학과)
  • Received : 2015.07.21
  • Accepted : 2016.02.24
  • Published : 2016.04.01

Abstract

Permeability can not be expressed as a function of porosity alone, it depends on the porosity, pore size and distribution, and tortuosity of pore channels in concrete. There has been considerable interest in the relationship between microstructure and transport in cementitious materials, however, it is very rare to deal with the theoretical study on gas permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. In this study, fundamental approach to compute gas permeability of (non)carbonated concrete is suggested. For several compositions of cement pastes, the gas permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. For carbonated concrete, reduced porosity was calculated and this was used for calculating the gas permeability coefficeint. As the result of calculation of gas permeability for carbonated concrete, carbonation leaded to the significant reduction of gas permeability coefficient and this was obvious for concrete with high w/c ratio. Meanwhile, the relationship between gas permeability and water permeability has a linear function for cement paste based on Klinkenberg effect, however, which is not effective for concrete. For the evidence of the modeling, YOON's test was accomplished and these results were compared to each other.

투기계수는 콘크리트의 공극뿐만 아니라 공극크기, 공극분포, 공극간의 굴곡특성에 의해서도 영향을 받는다. 투기계수는 시멘트 페이스트의 미세구조에 의해 지배되는데, 시멘트 페이스트 및 골재 각각이 콘크리트의 투기성능에 미치는 영향을 다룬 연구는 드물다. 더우기, 탄산화가 투기계수에 큰 영향을 미칠 수 있음에도 불구하고, 탄산화된 콘크리트에 대한 투기계수를 다룬 연구는 더욱 드문 실정이다. 본 연구의 목적은 탄산화 및 비탄산화된 콘크리트의 투기계수를 추정할 수 있는 기초적 접근방법을 개발하는 것이다. 본 연구에서는 미세구조 모델 및 시멘트의 경화특성을 기초로 투기계수를 산정할 수 있는 해석적 기법이 제안되었다. 탄산화된 콘크리트에서 감소된 공극량이 계산되었으며 이는 투기계수의 산정에 이용하여 탄산화된 콘크리트의 투기계수를 계산하였다. 높은 물-시멘트비를 갖는 콘크리트는 탄산화로 인하여 투기계수의 감소가 더욱 뚜렷한 것을 확인되었다. 한편, 시멘트 페이스트에서 투기계수와 투수계수는 Klinkenberg 효과에 의한 선형관계가 성립되나, 콘크리트에서는 성립되지 않았다. 해석결과는 YOON's 실험방법을 수행하여 검증하였다.

Keywords

References

  1. Ahmad, S., Azad, A. K. and Loughlin, K. F. (2012). "Effect of the key mixture parameters on tortuosity and permeability of concrete." Journal of Advanced Concrete Technology, Vol. 10, pp. 86-94. https://doi.org/10.3151/jact.10.86
  2. Bear, J. (1972). Dynamics of Fluids in Porous Media, American Elsevier Publishing Co. Ltd., New York.
  3. Dias, W. P. S. (2000). "Reduction of concrete sorptivity with age through carbonation." Cement and Concrete Research, Vol. 30, pp. 1255-1261. https://doi.org/10.1016/S0008-8846(00)00311-2
  4. FORGE (2011). Results of the Tests on Concrete, Technical Report CIEMAT/DMA/2G207/1/12, Euratom 7 th Framwork Programme Project, Madrid.
  5. Furbish, D. J. (1997). Fluid Physics in Geology; An Introduction to Fluid Motions on Earth's Surface and within its Crust, Oxford University Press, New York.
  6. Hirsch, T. J. (1962). "Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate." Journal of the American Concrete Institute, Vol. 59-12, pp. 427-451.
  7. Katz, A. J. and Thompson, A. H. (1986). "Quantitative prediction of permeability in porous rock." Physical Review B., Vol. 34, No. 11, pp. 8179-8181. https://doi.org/10.1103/PhysRevB.34.8179
  8. Klinkenberg, L. J. (1941). The Permeability of Porous Media to Liquids and Gases, Drilling and Productions Practices, American Petroleum Institute.
  9. Koenders, E. A. B. (1997). Simulation of Volume Changes in Hardening Cement-Based Materials, Ph D Dissertation of Delft University of Technology, The Netherlands.
  10. Neithalath, N., Weiss, J. and Olek, J. (2003). "Enhanced porosity of concrete: Permeability, Electrical Conductivity and Acoustic Peorformance." ACI Fall Convention, Boston.
  11. Ngala, V. T. and Page, C. L. (1997). "Effect of carbonation on pore structure and diffusion properties of hydrated cement pastes." Cement and Concrete Research, Vol. 27, No. 7, pp. 995-1007. https://doi.org/10.1016/S0008-8846(97)00102-6
  12. Nokken, M. R. and Hooton, R. D. (2008). "Using pore parameters to estimate permeability or conductivity of concrete." Materials and Structures, Vol. 41, No. 1, pp. 1-16. https://doi.org/10.1617/s11527-006-9212-y
  13. Papadakis, V. G. and Vayenas, C. G. (1991). "Physical and chemical characteristics affecting the durability of concrete." ACI Materials Journal, Vol. 8, No. 2, pp. 186-196.
  14. Persoff, P. and Hulen, J. B. (2001). Hydrologic Characterization of Reservoir Metagraywacke from Shallow and Deep Levels of the Geysers Vapor-dominated Geothermal System, California, USA, Geothermics, 30, 169-192. https://doi.org/10.1016/S0375-6505(00)00053-5
  15. Peter, A. C., Hanaa, E. S. and Ibrahim, G. S. (1999). "Permeability and pore volume of carbonated concrete." ACI Materials Journal, May-June, pp. 378-382.
  16. Picandet, V., Rangeard, D., Perrot, A. and Lecompte, T. (2011). "Permeability measurement of fresh cement paste." Cement and Concrete Research, Vol. 41, No. 3, pp. 330-338. https://doi.org/10.1016/j.cemconres.2010.11.019
  17. RILEM Report 12 (1997). Peromance Criteria for Concrete Durability, Kropp, J. Hilsdorf, H.K.(Eds.), E & FN Spon, 24-25.
  18. Samson, E., Marchand, J. and Snyder, K. A. (2003). "Calculation of inonic diffusion coefficients on the basis of migration test results." Materials and Structure, Vol. 36, No. 257, pp. 156-165. https://doi.org/10.1007/BF02479554
  19. Tang, L. and Nilsson, L.-O. (1992). "Astudy on the quantitative relationship between permeability and pore size distribution of hardened cement pastes." Cement and Concrete Research, Vol. 22, No. 4, pp. 541-550. https://doi.org/10.1016/0008-8846(92)90004-F
  20. Van Breugel, K. (1991). Simulation of Hydration and Formation of Structures in Hardening Cement-Based Materials, Ph.D Dissertation of Delft University of Technology, The Netherlands.
  21. Verbeck, G. J. (1975). "Corrosion of metals in concrete." ACI SP49, Special Publication, pp. 21-28.
  22. Yoon, I. S. (2009). "Analytical modeling for misrostructureal permeability cofficient of (Non)carbonated concrete." Journal of Korea Concrete Institute, Vol. 21, No. 3, pp. 255-264 (in Korean). https://doi.org/10.4334/JKCI.2009.21.3.255
  23. Yoon, I. S., Kim, E. K. and Lee, C. S. (2007). "Material modeling of concrete for chloride diffusivity considering carbonation of concrete." Journal of Korean Society of Civil Engieers, Vol. 27, No. 4-A, pp. 617-625 (in Korean).