• Title/Summary/Keyword: porosity model

Search Result 505, Processing Time 0.025 seconds

Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils (불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향)

  • Kim, Sangrae;Ki, Jaehong;Kim, Youngjin;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

Comparison Study for the Shear Strength of the Bondings between Stainless Steel Crown/Direct Type Composite Resin and Stainless Steel Crown/Indirect Type Composite Resin (치과 치료학에서 적용되는 접합기술 연구 ; 스테인리스강 크라운에 접합된 직접용 콤포짓트 레진과 간접용 콤포짓트 레진의 전단결합강도 비교)

  • Kim, Gwang-Soo;Baek, Kwang-Woo
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.93-99
    • /
    • 2011
  • This study was performed to compare the shear strength of the bondings between stainless steel crown/direct type composite resin and stainless steel crown/indirect type composite resin. Four groups of bonding conditions were prepared. Two groups of bonding conditions were made by the indirect type composite resin system and the other two groups were made by the direct type composite resin system. The shear strength tests were carried out using universal testing machine, Model 4465 of Instron Co.. It was indicated that the bond strength values of the indirect type composite resins were higher than those of the direct type composite resins. TE-SE group was superior to the TE-ONE in indirect type resin system. These results were thought to be the high degree of the polymerization accompanied with temperature and pressure of the resin of indirect type resin. It was also found that indirect composite resin contains less amount of porosity in resin.

The Change of Concrete Durability under High Temperature (고온수열 전후의 콘크리트 내구성 변화에 관한 연구)

  • Park, Jae-Hong;Jeon, Bong-Min;Oh, Sang-Gyun;Park, Dong-Cheon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.509-512
    • /
    • 2008
  • The nitrogen adsorption method was used to evaluate the change fine pore structure of concrete under high temperature. The mechanical properties and chloride ion diffusion coefficient were also measured. Two dimension FEM model for the life expectancy of RC structure was built considering the effect of high temperature. The porosity under 0.01${\mu}m$ decreased in proportion to the temperature. However, that of $0.01{\mu}m{\sim}0.1{\mu}m$ increased. The strength decreased and the chloride ion diffusion coefficient increased in the temperature range of $200{\sim}600^{\circ}C$.

  • PDF

Wave dispersion properties in imperfect sigmoid plates using various HSDTs

  • Batou, Belaid;Nebab, Mokhtar;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdeldjebbar;Bouremana, Mohammed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.699-716
    • /
    • 2019
  • In this paper, wave propagations in sigmoid functionally graded (S-FG) plates are studied using new Higher Shear Deformation Theory (HSDT) based on two-dimensional (2D) elasticity theory. The current higher order theory has only four unknowns, which mean that few numbers of unknowns, compared with first shear deformations and others higher shear deformations theories and without needing shear corrector. The material properties of sigmoid functionally graded are assumed to vary through thickness according sigmoid model. The S-FG plates are supposed to be imperfect, which means that they have a porous distribution (even and uneven) through the thickness of these plates. The governing equations of S-FG plates are derived employed Hamilton's principle. Using technique of Navier, differential equations of S-FG in terms displacements are solved. Extensive results are presented to check the efficient of present methods to predict wave dispersion and velocity wave in S-FG plates.

A frame work for heat generation/absorption and modified homogeneous-heterogeneous reaction in flow based on non-Darcy-Forchheimer medium

  • Hayat, Tasawar;Ahmad, Salman;Khan, Muhammad I.;Khan, Muhammad I.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.389-395
    • /
    • 2018
  • The present work aims to report the consequences of Darcy-Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy-Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorption. Transformation procedure is used. The arising system of nonlinear ordinary differential equations is solved numerically by means of shooting method. The effects of different flow variables on velocity, temperature, concentration, skin friction, and heat transfer rate are discussed. The obtained outcomes show that velocity was enhanced with the increase in the Weissenberg number but decays with increase in the porosity parameter and Hartman number. Temperature field is boosted by thermal radiation and heat generation; however, it decays with the increase in the Prandtl number.

MODELLING OF PYROLYSIS PROCESSES OF POLYACRYLONITRILE

  • Lipanov, A.M.;Kodolov, V.I.;Ovchinnikova, L.N.;Savinsky, S.S.;Khokhriakov, N.V.;Sarakula, V.L.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.112-119
    • /
    • 1997
  • The modelling of carbon substances obtaining, for instance, carbon fibers which have high fire resistance, has been realized on the example of the polyacrylonitrile pyrolysis modelling. The pyrolysis is considered as a double step process when the formation of a liquid phase and the oxidation of substance are excluded. Three main reactions are considered: a) with the evolution of ammonia; b) with the evolution of hydrogen cyanide; c) with the evolution of hydrogen. Reactions b) and c) are sequential, and a) and b) are parallel. The problem is formulated as one-dimensional. The equations of energy, masses or concentrations, porosity and thermal conductivity are proposed. The mathematical model of the carbonization process is designed using tile kinetic characteristics of the above reactions and the thermodynamic parameters of reagents and products in these reactions. The equations received are calculated by Runge-Cutta method and by Adams method of the fourth order accuracy.

  • PDF

Techniques to Estimate Permeability Based on Spectral Induced Polarization Survey (광대역유도분극 탐사에 기초한 유체투과도 예측기법들)

  • Kim, Bitnarae;Cho, AHyun;Weller, Andreas;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.55-69
    • /
    • 2020
  • Permeability-analyzing methods commonly involve small-scale drilling, such as pumping or slug test, but it is difficult to identify overall distribution of permeability of the entire target sites due to high cost and time requirement. Spectral induced polarization (SIP) method is known to be capable of providing distributions of both the porosity and the pore size, the two major parameters determining permeability of the porous medium. The relationship between SIP variables and permeability has been studied to identify the hydrological characteristics of target sites. Kozeny-Carman formula has been improved through many experiments to better predict fluid permeability with electrical properties. In this work, the permeability prediction techniques based on SIP data were presented in accordance with the hydrogeological and electrical characteristics of a porous medium. Following the summary of the techniques, various models and related laboratory experiments were analyzed and examined. In addition, the field applicability of the prediction model was evaluated by field case analysis.

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.