DOI QR코드

DOI QR Code

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S. (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University)
  • Received : 2020.07.27
  • Accepted : 2020.08.17
  • Published : 2020.10.12

Abstract

In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

Keywords

References

  1. K. B. Biplob, I. Katsutoshi, N. G. Kedar, H. Hiroyuki, O. Keisuke, and K. Hidetaka, Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium, Bioresour. Technol., 99, 8685-8690 (2008). https://doi.org/10.1016/j.biortech.2008.04.015
  2. K. G. Ravindra, B. Sushmita, K. G. Pavan, and M. C. Chattopadhyaya, Remediation technologies for phosphate removal from wastewater: An overview. In J. A. Daniels (Ed), Advances in Environmental Research, Nova Science Publishers, Inc., 36, 177-200 (2014).
  3. T. B. Joshua, N. Edmond, D. O. Irina, M. Andrew, and W. G. David, A Review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci., 6, 1-15 (2018). https://doi.org/10.3389/fenvs.2018.00001
  4. P. Loganathan, V. Saravanamuthu, J. Kandasamy, and S. B. Nanthi, Removal and recovery of phosphate from water using sorption, Crit. Rev. Environ. Sci. Technol., 44, 847-907 (2014). https://doi.org/10.1080/10643389.2012.741311
  5. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu, Selective adsorption of phosphate from sea water and wastewater by amorphous zirconium hydroxide, J. Colloid Interface Sci., 297, 426-433 (2006). https://doi.org/10.1016/j.jcis.2005.11.011
  6. G. Zhang, H. Liu, R. Liu, and J. Qu, Removal of phosphate from water by a Fe-Mn binary oxide adsorbent, J. Colloid Interface Sci., 335, 168-174 (2009). https://doi.org/10.1016/j.jcis.2009.03.019
  7. S. Karaca, A. Gurses, M. Ejder, and M. Acikyildiz, Adsorptive removal of phosphate from aqueous solutions using raw and calcined dolomite, J. Hazard. Mater., B128, 273-279 (2006).
  8. S. M. Ashekuzzaman and J. Jia-Qian, Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water, Chem. Eng. J., 246, 97-105 (2014). https://doi.org/10.1016/j.cej.2014.02.061
  9. J. K. Edzwald, D. C. Toensing, and M. C. Y. Leung, Phosphate adsorption reactions with clay minerals, Environ. Sci. Technol., 10, 485-490 (1976). https://doi.org/10.1021/es60116a001
  10. X. Cui, X. Dai, K. Y. Khan, T. Li, X. Yang, and Z. He, Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata, Bioresour. Technol., 218, 1123-1132 (2016). https://doi.org/10.1016/j.biortech.2016.07.072
  11. R. Awual, A. Jyo, S. A. El-Safty, M. Tamada, and N. Seka, A weak-fibrous anion exchanger effective for rapid phosphate removal from water, J. Hazard. Mater., 188, 164-171 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.092
  12. E. Ou, J. Zhou, S. Mao, J. Wang, F. Xia, and L. Min, Higly efficient removal of phosphate by lanthanum-doped mesoporous $SiO_2$, Colloids Surf. A. Physicochem. Eng. Aspects, 308, 47-53 (2007). https://doi.org/10.1016/j.colsurfa.2007.05.027
  13. H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 974 (2013).
  14. B. J. Yao, W. L. Jiang, Y. Dong, Z. X. Liu, and Y. B. Dong, Post-synthetic polymerization of UiO-66-$NH_2$ nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation, Chem. Eur. J., 22, 10565-10571 (2016). https://doi.org/10.1002/chem.201600817
  15. M. Wu, H. L. Ye, F. Q. Zhao, and B. Z. Zeng, High-quality metal-organic framework ZIF-8 membrane supported on electrodeposited ZnO/2-methylimidazole nanocomposite: Efficient adsorbent for the enrichment of acidic drugs, Sci. Rep., 7, 39778 (2017). https://doi.org/10.1038/srep39778
  16. P. W. Seo, N. A. Khan, and S. H. Jhung, Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine, Chem. Eng. J., 315, 92-100 (2017). https://doi.org/10.1016/j.cej.2017.01.021
  17. S. Aslam, F. Subhan, Z. F. Yan, U. J. Etim, and J. B. Zeng, Dispersion of nickel nanoparticles in the cages of metal-organic framework: An efficient sorbent for adsorptive removal of thiophene, Chem. Eng. J., 315, 469-480 (2017). https://doi.org/10.1016/j.cej.2017.01.047
  18. Z. Q. Xie, W. W. Xu, X. D. Cui, and Y. Wang, Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications, Chem. Sus. Chem., 10, 1645-1663 (2017). https://doi.org/10.1002/cssc.201601855
  19. G. Wissmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider, and P. Behrens. Modulated synthesis of Zr-fumarate MOF, Microporous Mesoporous Mater., 152, 64-70 (2012). https://doi.org/10.1016/j.micromeso.2011.12.010
  20. K. Y. A. Lin, S. Y. Chen, and A. P. Jochems, Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine, Mater. Chem. Phys., 160, 168-176, (2015). https://doi.org/10.1016/j.matchemphys.2015.04.021
  21. X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, and J. Gu, Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UIO-67, ACS Appl. Mater. Interfaces, 7, 223-231 (2015). https://doi.org/10.1021/am5059074
  22. F. Ke, C. Peng, T. Zhang, M. Zhang, C. Zhou, H. Cai, J. Zhu, and X. Wan, Fumarate-based metal-organic frameworks as a new platform for highly selective removal of fluoride from brick tea, Sci. Rep., 8, 939 (2018). https://doi.org/10.1038/s41598-018-19277-2
  23. J. Das, B. S. Patra, N. Baliarsingh, and K. M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions, Appl. Clay Sci., 32, 252-260 (2006). https://doi.org/10.1016/j.clay.2006.02.005
  24. D. Shilin, F. Dexin, P. Zishan, L. Bin, K. Li, W. Han, Z. Qian, S. Qiushi, and J. Fangying, Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal, Sci. Total Environ., 645, 937-945 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.197
  25. M. Hamou, A. Hammou, A. Mustapha, and M. Hamid, Critical of linear and nonlinear equations of pseudo-first order and pseudo- second order kinetic models, Karbala Int. J. Mod. Sci., 4, 244-254 (2018). https://doi.org/10.1016/j.kijoms.2018.04.001
  26. R. Dariush, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 3, 55-60 (2013). https://doi.org/10.1186/2193-8865-3-55
  27. Z. Ren, L. Shao, and G. Zhang, Adsorption of phosphate from aqueous solution using an iron-zirconium binary oxide sorbent, Water, Air Soil Pollut., 223, 4221-4231 (2012). https://doi.org/10.1007/s11270-012-1186-5
  28. M. Yang, J. Lin, Y. Zhan, Z. Zhu, and H. Zhang, Immobilization of phosphorus from water and sediment using zirconium-modified zeolites, Environ. Sci. Pollut. Res. Int., 22, 3606-3619 (2015). https://doi.org/10.1007/s11356-014-3604-2
  29. H. Liu, X. Sun, C. Yin, and C. Hu, Removal of phosphate by mesoporous ZrO2, J. Hazard. Mater., 151, 616-622 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.033
  30. Y. Tang, E. Zong, H. Wan, Z. Xu, S. Zheng, and D. Zhu, Zirconia functionalized SBA-15 as effective adsorbent for phosphate removal, Microporous Mesoporous Mater., 155, 192-200 (2012). https://doi.org/10.1016/j.micromeso.2012.01.020
  31. Y. Su, H. Cui, Q. Li, S. Gao, and J. K. Shang, Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles, Water Res., 47, 5018-5026 (2013). https://doi.org/10.1016/j.watres.2013.05.044
  32. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu, Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide. J. Colloid Interface Sci., 297, 426-433 (2006). https://doi.org/10.1016/j.jcis.2005.11.011
  33. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, and T. Hirotsu, Synthesis and phosphate uptake behavior of $Zr^{4+}$ incorporated MgAl-layered double hydroxides, J. Colloid Interface Sci., 313, 53-63 (2007). https://doi.org/10.1016/j.jcis.2007.04.004
  34. E. Zong, D. Wei, H. Wan, S. Zheng, Z. Xu, and D. Zhu, Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide, Chem. Eng. J., 221, 193-203, (2013). https://doi.org/10.1016/j.cej.2013.01.088
  35. F. Dexin, H. Liping, F. Zhuoyao, Z. Qian, S. Qiushi, L. Yimeng, X. Xiaoyi, and I. J. Fangy, Evaluation of porous calcium silicate hydrate derived from carbide slag for removing phosphate from wastewater, Chem. Eng. J., 354, 1-11 (2018). https://doi.org/10.1016/j.cej.2018.08.001