• Title/Summary/Keyword: Chemisorption

Search Result 183, Processing Time 0.035 seconds

Quantitative Analysis on Chemisorption of NaDDTC as Organic Compound containing Sulfur for Cu-Ni Alloy (황을 포함한 유기화합물인 NaDDTC의 CuNi합금에 대한 화학적 흡착에 관한 정량적 분석)

  • Jung, Gilbong;Kim, Dongyung;Jang, Yohan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.548-557
    • /
    • 2015
  • This paper is results on Chemisorption of organic compound for the sea water fire fighting line of naval vessels. The quantitative analysis of Chemisorption has been investigated in seawater after immersion in 0.1 % of NaDDTC solutions for 43 hours. The morphology and topography were investigated by FE-SEM and AFM. The chemical elements were analyzed by SEM-EDS, XPS and the depth of chemical elements was measured by depth profiles. The effect of NaDDTC comes from Chemisorption between Copper and Sulfur of NaDDTC. As a result, test results showed that sulfur is helpful to protect a corrosion of seawater line.

A Green's-Matrix Approach to Chemisorption

  • Jang, Yun-Hee;Kim, Ho-Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.238-243
    • /
    • 1993
  • A self-consistent-field Green's matrix method for the calculation of electronic properties of chemisorbed system is devised and applied to the methanol on copper(110) surface. The method is based on CNDO Hartree-Fock approximation. Contour integration in the complex energy plane is used for an efficient calculation of the charge-density bond-order matrix. The information on each fragment prior to chemisorption is efficiently used and a small number of iterations are needed to reach the self-consistency. The changes of density of states and other quantities of methanol due to chemisorption are consistent with reported experimental results.

Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging (이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성)

  • Choi Byungchul;Jeong Jongwoo;Son Geonseog;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.

C$_2H_2$ chemisorption for characterization of carbon black active sites (카본블랙 활성점 연구를 위한 아세틸렌 화학흡착)

  • Lee, Sang-Yup;Kwak, Jung-Hun;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.80-83
    • /
    • 2007
  • In order to characterize the catalytically active sites on carbon black, acetylene chemisorption had been examined recently at 773 and 873 K by using a pulse technique. As the inject ion was repeated at 773 K, the adsorbed amount gradually decreased and eventually the adsorption did not occur any more. At 873 K a constant amount of $C_2H_2$ was consumed repeatedly after several injections. Good linear relationships were obtained between the methane decomposition rate at 1123 or 1173 K and the cumulative acetylene adsorption at 773 K or the constant acetylene consumption at 873 K. Reasonable models for the associative acetylene chemisorption at 773 K and the constant acetylene consumption at 873 K on the armchair face at the edges of graphene layers were proposed. The constant consumpt ion may be explained by the "$C_2H_2$-addition-hydrogen- abstract ion (CAHA)" mechanism.

  • PDF

XPS Studies of CO Adsorption on Polycrystalline Nickel Surface

  • Boo, Jin-Hyo;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.388-393
    • /
    • 1988
  • The chemisorption of CO molecules on polycrystalline nickel surface has been studied by investigating the resulting chemisorbed species with the X-ray photoelectron spectroscopy at temperatures between 300K through 433K. It is found that the adsorbed CO molecules are dissociated by the simple C-O bond cleavage as well as by the disproportionation reaction at temperatures above 373K. The former type dissociation is more favored at low coverages and at elevated temperatures. The isotherms of CO chemisorption are obtained from the xps intensities of C 1s peaks, and then the activation energy of the dissociative adsorption is estimated as a function of the CO exposure. These activation energies are extrapolated to zero coverage to obtain the activation energy of chemisorption in which thermal C-O bond cleavage takes place. The value obtained is 38.1 kJ/mol.

Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity (Pd/C 촉매 제조 방법에 따른 Pd 금속의 특성 및 촉매 활성)

  • Kim, Ji Sun;Hong, Seong-Soo;Kim, Jong-Hwa;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.575-580
    • /
    • 2015
  • Pd/C catalysts were prepared by various preparation methods such as ion exchange, impregnation and polyol method and also characterized by nitrogen adsorption-desorption isothermal, XRD, FE-TEM and CO-chemisorption. The activities of these catalysts were tested in the hydrogenation of cyclohexene to cyclohexane. Catalytic activities of Pd/C catalysts were found to be effected by the chosen preparation methods. Pd dispersions of each Pd/C catalysts prepared by ion exchange, impregnation and polyol method were 17.55, 13.82% and 1.35%, respectively, confirmed by CO-chemisorption analysis. These were also in good agreement with the FE-TEM results. The Pd/C catalyst prepared by ion exchange method exhibits good performance with the cyclohexene conversion rate of 71% for 15 min. These results indicate that Pd/C catalyst having higher dispersion and lower particle size is in favor of hydrogenation cyclohexene and also Pd dispersion increases with the increment of catalytic activity.

Adsorption and Desorption of CO on W(110) Surfaces

  • Yang, Taek-seung;Jee, Hae-geun;Boo, Jin-Hyo;Han, Hyun-Seok;Lee, Gyung-Hee;Kim, Young-Dok;Lee, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1115-1120
    • /
    • 2008
  • The adsorption of CO on W(110) surfaces was studied using thermal desorption spectroscopy (TDS), and core and valence level spectroscopy. At 120 K, CO forms a tilted structure at lower coverages ($\alpha$ 1), whereas it adsorbs normal to the surface at higher coverages ($\alpha$ 2). Tilted structures have been suggested to be precursors of dissociative chemisorption; however, experimental evidence is provided for the non-dissociative chemisorption of CO at temperatures above 900 K (which is referred to as the $\beta$ -state): TDS shows first order desorption kinetics. The core and valence level spectra of O/W(110) and those of $\beta$ -CO/W(110) are different. Most importantly, the 4$\sigma$ molecular orbital of CO can be identified in the valence level spectra of the $\beta$ -CO.

XPS Studies of Oxygen Adsorption on Polycrystalline Nickel Surface (II)

  • Lee Soon-Bo;Boo Jin-Hyo;Ham Kyoung-Hee;Ahn Woon-Sun;Lee Kwang-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.32-36
    • /
    • 1988
  • The isotherms of oxygen chemisorption on polycrystaline nickel surface are obtained at various temperatures between 298K and 523K from intensity measurernent of O 1s xps peaks, and the activation energy of the chemisorption is estimated as a function of the coverage. The activation energy extrapolated to zero coverage is found to be -5.9 kJ/mol. The negative activation energy can be taken as a strong implication of the propriety of a currently accepted chemisorption model, in which molecularly adsorbed precursor state is assumed to exist. The residence time of this precursor state is estimated by assuming a molecularly physisorbed state for the precursor state and assuming a pairwise interaction energy of Lennard-Jones 12-6 potential between an admolecule and each substrate nickel atom. The sticking coefficients are also calculated from the isotherms. The calculated results agree well with those obtained by others with different methods.