DOI QR코드

DOI QR Code

Adsorption and Desorption of CO on W(110) Surfaces

  • Published : 2008.06.20

Abstract

The adsorption of CO on W(110) surfaces was studied using thermal desorption spectroscopy (TDS), and core and valence level spectroscopy. At 120 K, CO forms a tilted structure at lower coverages ($\alpha$ 1), whereas it adsorbs normal to the surface at higher coverages ($\alpha$ 2). Tilted structures have been suggested to be precursors of dissociative chemisorption; however, experimental evidence is provided for the non-dissociative chemisorption of CO at temperatures above 900 K (which is referred to as the $\beta$ -state): TDS shows first order desorption kinetics. The core and valence level spectra of O/W(110) and those of $\beta$ -CO/W(110) are different. Most importantly, the 4$\sigma$ molecular orbital of CO can be identified in the valence level spectra of the $\beta$ -CO.

Keywords

References

  1. Horn, K.; Bradshaw, A.; Jacobi, K. Surf. Sci. 1978, 72, 719 https://doi.org/10.1016/0039-6028(78)90356-4
  2. Ehrlich, G.; Hickmott, T. W.; Hudda, F. G. J. Chem. Phys. 1958, 28, 506 https://doi.org/10.1063/1.1744167
  3. Ehrlich, G. J. Chem. Phys. 1961, 34, 39 https://doi.org/10.1063/1.1731611
  4. Swanson, L. W.; Gomer, R. J. Chem. Phys. 1963, 39, 2813 https://doi.org/10.1063/1.1734111
  5. Klein, R. J. Chem. Phys. 1959, 31, 1306 https://doi.org/10.1063/1.1730589
  6. Kohrt, C.; Gomer, R. Surf. Sci. 1973, 40, 71 https://doi.org/10.1016/0039-6028(73)90052-6
  7. Goymour, C. G.; King, D. A. J. Chem. Soc. Faraday Trans. 1 1973, 69, 736 https://doi.org/10.1039/f19736900736
  8. Goymour, C. G.; King, D. A. J. Chem. Soc. Faraday Trans. 1 1973, 69, 749 https://doi.org/10.1039/f19736900749
  9. Goymour, C. G.; King, D. A. Surf. Sci. 1973, 35, 246 https://doi.org/10.1016/0039-6028(73)90217-3
  10. Wang, C.; Gomer, R. Surf. Sci. 1979, 90, 10 https://doi.org/10.1016/0039-6028(79)90007-4
  11. Umbach, E.; Fuggle, J. C.; Menzel, D. J. Electron Spec. and Rel. Phenom. 1977, 10, 15 https://doi.org/10.1016/0368-2048(77)85002-0
  12. Umbach, E.; Menzel, D. Surf. Sci. 1983, 135, 199 https://doi.org/10.1016/0039-6028(83)90219-4
  13. Yates, Jr. J. T. Surf. Sci. 1994, 299, 731 https://doi.org/10.1016/0039-6028(94)90693-9
  14. Campuzano, J. C. The Adsorption of Carbon Monoxide by Transition Metals; The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis; King, D. A.; Woodruff, D. P., Eds.; Elservier: Amsterdam, 1990; Vol. 3, Part A3
  15. Shimizhu, Y.; Ohi, A.; Tokumoto, H. Surf. Sci. 1999, 429, 143 https://doi.org/10.1016/S0039-6028(99)00358-1
  16. Houston, J. E. Surf. Sci. 1991, 255, 303 https://doi.org/10.1016/0039-6028(91)90687-N
  17. Chen, L.; Sholl, D. S.; Johnson, J. K. J. Phys. Chem. B 2006, 110, 1344 https://doi.org/10.1021/jp055374z
  18. Lee, S. Y.; Kim, Y.-D.; Yang, T. S.; Boo, J.-H.; Park, S. C.; Lee, S.-B. J. Vac. Sci. Technol. A 2000, 18, 1455 https://doi.org/10.1116/1.582369
  19. Lee, S. Y.; Kim, Y. D.; Seo, S. N.; Park, C. Y.; Kwak, H. T.; Boo, J.-H.; Lee, S.-B. Bull. Kor. Chem. Soc. 1999, 20, 1061
  20. Ryu, G. H.; Park, S. C.; Lee, S.-B. Surf. Sci. 1999, 427-428, 419 https://doi.org/10.1016/S0039-6028(99)00314-3
  21. Choe, S. J.; Kang, H. J.; Park, D. H.; Huh, D. S.; Lee, S.-B. Bull. Kor. Chem. Soc. 2004, 25, 1314 https://doi.org/10.5012/bkcs.2004.25.9.1314
  22. Introduction to Surface Physical Chemistry; Christmann, K., Ed.; Springer: New York, 1991
  23. Principles of Adsorption and Reaction on Solid Surfaces; Masel, R. I., Ed.; John Wiley and Sons, Inc.: 1996
  24. Eastman, D. E.; Cashion, K. Phys. Rev. Lett. 1971, 27, 1520 https://doi.org/10.1103/PhysRevLett.27.1520
  25. Fuggle, J. C.; Steinkilberg, M.; Menzel, D. Chem. Phys. 1975, 11, 307 https://doi.org/10.1016/0301-0104(75)80011-5
  26. Allyn, C. L.; Gustafsson, T.; Plummer, E. W. Sold State Comm. 1977, 24, 531 https://doi.org/10.1016/0038-1098(77)90156-9
  27. Davenport, J. W. Phys. Rev. Lett. 1976, 36, 945 https://doi.org/10.1103/PhysRevLett.36.945
  28. Smith, R. J.; Anderson, J. A.; Lepeyre, G. J. Phys. Rev. Lett. 1976, 37, 1081 https://doi.org/10.1103/PhysRevLett.37.1081
  29. Apai, G.; Wehner, P. S.; Williams, R. S.; Stohr, J.; Shirley, D. A. Phys. Rev. Lett. 1976, 37, 1497 https://doi.org/10.1103/PhysRevLett.37.1497
  30. Shinn, N. D.; Madey, T. E. Phys. Rev. B 1986, 33, 1464 https://doi.org/10.1103/PhysRevB.33.1464
  31. Shinn, N. D. Phys. Rev. B 1988, 38, 12248 https://doi.org/10.1103/PhysRevB.38.12248
  32. Benndorf, C.; Nieber, B.; Kruger, B. Surf. Sci. 1986, 177, L907 https://doi.org/10.1016/0039-6028(86)90249-9
  33. Mehandru, S. P.; Anderson, P. Surf. Sci. 1988, 201, 345 https://doi.org/10.1016/0039-6028(88)90617-6

Cited by

  1. Adsorption and Reactions of Carbon Monoxide and Oxygen on Bare and Au-Decorated Carburized W(110) vol.117, pp.33, 2013, https://doi.org/10.1021/jp404528p
  2. CO Adsorption on Mo(110) Studied Using Thermal Desorption Spectroscopy (TDS) and Ultraviolet Photoelectron Spectroscopy (UPS) vol.30, pp.6, 2008, https://doi.org/10.5012/bkcs.2009.30.6.1353
  3. Adsorption behaviors of CO on W(110) and Mo(110) surfaces in the β-state are still not clear vol.603, pp.10, 2008, https://doi.org/10.1016/j.susc.2008.09.053
  4. Co-adsorption of CO and oxygen on W(110) surfaces vol.85, pp.1, 2008, https://doi.org/10.1016/j.vacuum.2010.04.003
  5. CO adsorption on oxygen-modified molybdenum surfaces vol.72, pp.6, 2008, https://doi.org/10.1016/j.jpcs.2011.03.007