DOI QR코드

DOI QR Code

Wave dispersion properties in imperfect sigmoid plates using various HSDTs

  • Batou, Belaid (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Nebab, Mokhtar (Department of civil engineering, Faculty of civil engineering and architecture, University Hassiba Benbouali of Chlef) ;
  • Bennai, Riadh (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Atmane, Hassen Ait (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bouremana, Mohammed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2019.06.09
  • Accepted : 2019.09.22
  • Published : 2019.12.10

Abstract

In this paper, wave propagations in sigmoid functionally graded (S-FG) plates are studied using new Higher Shear Deformation Theory (HSDT) based on two-dimensional (2D) elasticity theory. The current higher order theory has only four unknowns, which mean that few numbers of unknowns, compared with first shear deformations and others higher shear deformations theories and without needing shear corrector. The material properties of sigmoid functionally graded are assumed to vary through thickness according sigmoid model. The S-FG plates are supposed to be imperfect, which means that they have a porous distribution (even and uneven) through the thickness of these plates. The governing equations of S-FG plates are derived employed Hamilton's principle. Using technique of Navier, differential equations of S-FG in terms displacements are solved. Extensive results are presented to check the efficient of present methods to predict wave dispersion and velocity wave in S-FG plates.

Keywords

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Addou, F.Y., Meradjah, M., M.A.A, Bousahla, Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347
  4. Ait Atmane, H., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
  5. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  6. Ait Atmane, H., Bedia, E.A.A., Bouazza, M., Tounsi, A. and Fekrar, A. (2016), "On the thermal buckling of simply supported rectangular plates made of a sigmoid functionally graded $Al/Al_2O_3$ based material", Mech. Solids, 51(2), 177-187. https://doi.org/10.3103/S0025654416020059
  7. Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x
  8. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  9. Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123, 296. https://doi.org/10.1007/s00339-017-0854-0
  10. Aminipour, H., Janghorban, M. and Li, L. (2018), "A new model for wave propagation in functionally graded anisotropic doublycurved shells", Compos. Struct., 190, 91-111. https://doi.org/10.1016/j.compstruct.2018.02.003
  11. Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004
  12. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  13. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453
  14. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
  15. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  16. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., Int. J., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369
  17. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Computat. Des., Int. J., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289
  18. Azizi, N., Saadatpour, M.M. and Mahzoon, M. (2019), "Analyzing first symmetric and antisymmetric Lamb wave modes in functionally graded thick plates by using spectral plate elements", Int. J. Mech. Sci., 150, 484-494. https://doi.org/10.1016/j.ijmecsci.2018.10.030
  19. Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., Int. J., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311
  20. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Computat. Des., Int. J., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213
  21. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  22. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017a), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257
  23. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017b), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
  24. Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., Int. J., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255
  25. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., Int. J., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019
  26. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277
  27. Benferhat, R., HassaineDaouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123
  28. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
  29. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  30. Bennai, R., Fourn, H., Ait Atmane, H. Tounsi, A. and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., Int. J., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049
  31. Bennai, R., Atmane, H.A., Ayach, B., Tounsi, A, Adda Bedia, E.A. and Al-Osta, M.A. (2019), "Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory", Earthq. Struct., Int. J., 16(5), 547-561. https://doi.org/10.12989/eas.2019.16.5.547
  32. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., Int. J., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279
  33. Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., Int. J., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021
  34. Berghouti, H., Adda Bedia, E.A. Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
  35. Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E: Low-dimens. Syst. Nanostruct., 43(7), 1379-1386. https://doi.org/10.1016/j.physe.2011.03.008
  36. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, 1-15. https://doi.org/10.1080/15440478.2018.1503129
  37. Bouanati, S., Benrahou, K.H., Ait Atmane, H., Ait Yahia, S., Bernard, F., Tounsi, A. and Adda Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., Int. J., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085
  38. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., Int. J., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061
  39. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  40. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
  41. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int. J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161
  42. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  43. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., Int. J., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661
  44. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  45. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  46. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2). [In press]
  47. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
  48. Cao, X., Jin, F., Jeon, I. and Lu, T.J. (2009), "Propagation of Love waves in a functionally graded piezoelectric material (FGPM) layered composite system", Int. J. Solids Struct., 46(22-23), 4123-4132. https://doi.org/10.1016/j.ijsolstr.2009.08.005
  49. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185
  50. Chakraborty, A. and Gopalakrishnan, S. (2004), "A higher-order spectral element for wave propagation analysis in functionally graded materials", Acta Mechanica, 172(1), 17-43. https://doi.org/10.1007/s00707-004-0158-2
  51. Chen, W.Q., Wang, H.M. and Bao, R.H. (2007), "On calculating dispersion curves of waves in a functionally graded elastic plate", Compos. Struct., 81(2), 233-242. https://doi.org/10.1016/j.compstruct.2006.08.009
  52. Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  53. Chi, S.-H. and Chung, Y.-L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  54. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  55. Chung, Y.-L. and Chang, H.-X. (2008), "Mechanical Behavior of Rectangular Plates with Functionally Graded Coefficient of Thermal Expansion Subjected to Thermal Loading", J. Thermal Stress., 31(4), 368-388. https://doi.org/10.1080/01495730801912397
  56. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Computat. Des., Int. J., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057
  57. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  58. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
  59. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117
  60. Ebrahimi, F. and Dabbagh, A. (2017), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
  61. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585
  62. Fadodun, O.O., Layeni, O.P. and Akinola, A.P. (2017), "Fractional wave propagation in radially vibrating non-classical cylinder", Earthq. Struct., Int. J., 13(5), 465-471. https://doi.org/10.12989/eas.2017.13.5.465
  63. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., Int. J., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385
  64. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
  65. Fazzolari, F.A. (2016), "Modal characteristics of P- and S-FGM plates with temperature-dependent materials in thermal environment", J. Thermal Stress., 39(7), 854-873. https://doi.org/10.1080/01495739.2016.1189772
  66. Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022
  67. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda, B. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct., Int. J., 13(1), 91-107. https://doi.org/10.12989/scs.2012.13.1.091
  68. Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., Int. J., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109
  69. Ghorbanpour Arani, A., Jamali, M., Mosayyebi, M. and Kolahchi, R. (2016), "Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory", Compos. Part B: Eng., 95, 209-224. https://doi.org/10.1016/j.compositesb.2016.03.077
  70. Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory", Int. J. Mech. Mater. Des., 14(2), 277-296. https://doi.org/10.1007/s10999-017-9369-2
  71. Gupta, A. and Talha, M. (2018), "Static and Stability Characteristics of Geometrically Imperfect FGM Plates Resting on Pasternak Elastic Foundation with Microstructural Defect", Arab. J. Sci. Eng., 43(9), 4931-4947. https://doi.org/10.1007/s13369-018-3240-0
  72. Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0
  73. Han, S.-C., Park, W.-T. and Jung, W.-Y. (2015), "A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface", Compos. Struct., 131, 1081-1089. https://doi.org/10.1016/j.compstruct.2015.06.025
  74. Han, S.-C., Park, W.-T. and Jung, W.-Y. (2016), "3D graphical dynamic responses of FGM plates on Pasternak elastic foundation based on quasi-3D shear and normal deformation theory", Compos. Part B: Eng., 95, 324-334. https://doi.org/10.1016/j.compositesb.2016.04.018
  75. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636219845841
  76. Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035
  77. Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Model., 65, 303-317. https://doi.org/10.1016/j.apm.2018.08.014
  78. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018a), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071
  79. Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018b), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8
  80. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039
  81. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-432. https://doi.org/10.12989/anr.2019.7.6.431
  82. Idesman, A. (2014), "Accurate finite-element modeling of wave propagation in composite and functionally graded materials", Composite Structures, 117, 298-308. https://doi.org/10.1016/j.compstruct.2014.06.032
  83. Janghorban, M. and Nami, M.R. (2016), "Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory", Mech. Adv. Mater. Struct., 24(6), 458-468. https://doi.org/10.1080/15376494.2016.1142028
  84. Jung, W.-Y. and Han, S.-C. (2015), "Static and eigenvalue problems of Sigmoid Functionally Graded Materials (S-FGM) micro-scale plates using the modified couple stress theory", Appl. Math. Model., 39(12), 3506-3524. https://doi.org/10.1016/j.apm.2014.11.056
  85. Kar, V.R. and Panda, S.K. (2015a), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006
  86. Kar, V.R. and Panda, S.K. (2015b), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
  87. Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chinese J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007
  88. Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701
  89. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
  90. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  91. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  92. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  93. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018c), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
  94. Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  95. Karami, B., Janghorban, M. and Li, L. (2018e), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011
  96. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
  97. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
  98. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  99. Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2019), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3
  100. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  101. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1
  102. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
  103. Kudela, P., Zak, A., Krawczuk, M. and Ostachowicz, W. (2007), "Modelling of wave propagation in composite plates using the time domain spectral element method", J. Sound Vib., 302(4-5), 728-745. https://doi.org/10.1016/j.jsv.2006.12.016
  104. Lee, W.-H., Han, S.-C. and Park, W.-T. (2015), "A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation", Compos. Struct., 122, 330-342. https://doi.org/10.1016/j.compstruct.2014.11.047
  105. Mahapatra, T.R., Panda, S.K., Kar, V.R. (2016a), "Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading - A micromechanical approach", Int. J. Computat. Methods, 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
  106. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
  107. Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Thermal Stress., 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788
  108. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modelling., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  109. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577
  110. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  111. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443
  112. Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, E.A.A. (2012), "Analytical Solutions for Static Shear Correction Factor of Functionally Graded Rectangular Beams", Mech. Adv. Mater. Struct., 19(8), 641-652. https://doi.org/10.1080/15376494.2011.581409
  113. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157
  114. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  115. Nebab, M., Ait Atmane, H. and Bennai, R. (2018), "Analyse en flexion des plaques FGM sur fondation elastique", Academic J. Civil Eng., 36(1), 516-519. https://doi.org/10.26168/ajce.36.1.109
  116. Nebab, M., Ait Atmane, H. Bennai, R., Tounsi, A. and Bedia, EA. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., Int. J., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511
  117. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
  118. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445
  119. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
  120. Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A. and Ali, M.M. (2018), "Thermal transportation behaviour prediction of defective graphene sheet at various temperature: A Molecular Dynamics Study", Am. J. Nanomater., 6(1), 34-40. https://doi.org/10.12691/ajn-6-1-4
  121. Shen, H.-S. and Wang, Z.-X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018
  122. Thang, P.T. and Lee, J. (2018), "Free vibration characteristics of sigmoid-functionally graded plates reinforced by longitudinal and transversal stiffeners", Ocean Eng., 148, 53-61. https://doi.org/10.1016/j.oceaneng.2017.11.023
  123. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637
  124. Tounsi, A., Ait Atmane, H., Khiloun, M., Sekkal, M., Taleb, O. and Bousahla, A.A. (2019), "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., Int. J., 1(1), 1-19. https://doi.org/10.12989/cme.2019.1.1.001
  125. Wang, Y. and Zu, J.W. (2018), "Nonlinear dynamic behavior of inhomogeneous functional plates composed of sigmoid graded metal-ceramic materials", Sci. China Technol. Sci., 61(11), 1654-1665. https://doi.org/10.1007/s11431-017-9167-9
  126. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  127. Yeghnem, R., Guerroudj, H.Z., Amar, L.H.H., Meftah, S.A., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2017), "Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models", Comput. Concrete, Int. J., 19(5), 579-588. https://doi.org/10.12989/cac.2017.19.5.579
  128. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065
  129. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., Int. J., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519
  130. Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., Int. J., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353
  131. Yu, J., Wu, B. and He, C. (2010), "Guided thermoelastic waves in functionally graded plates with two relaxation times", Int. J. Eng. Sci., 48(12), 1709-1720. https://doi.org/10.1016/j.ijengsci.2010.10.002
  132. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
  133. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., Int. J., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389
  134. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125

Cited by

  1. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.397
  2. Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
  3. Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.343
  4. An investigation of the thermodynamic effect on the response of FG beam on elastic foundation vol.76, pp.1, 2020, https://doi.org/10.12989/sem.2020.76.1.115
  5. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  6. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
  7. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.033
  8. Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.081
  9. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.015
  10. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
  11. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.263
  12. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2019, https://doi.org/10.12989/sem.2021.77.6.797
  13. Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2019, https://doi.org/10.12989/scs.2021.39.1.095
  14. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
  15. Mechanics of anisotropic cardiac muscles embedded in viscoelastic medium vol.12, pp.1, 2019, https://doi.org/10.12989/acc.2021.12.1.057
  16. Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.001
  17. A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers vol.79, pp.3, 2019, https://doi.org/10.12989/sem.2021.79.3.279
  18. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.697
  19. Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment vol.26, pp.21, 2019, https://doi.org/10.3390/molecules26216594