• 제목/요약/키워드: pore pressure change

검색결과 156건 처리시간 0.023초

풍화토 사면에서 강우로 인한 간극수압 변화에 대한 실험연구 (In-situ Monitoring of Matric Suctions in a Weathered Soil Slope)

  • 이인모;조우성;김영욱;성상규
    • 한국지반공학회논문집
    • /
    • 제19권1호
    • /
    • pp.41-49
    • /
    • 2003
  • 우리나라에서 흔히 볼 수 있는 화강풍화토 사면에서 강우침투로 인한 사면파괴는 통상 지하수위 위쪽의 얕은 깊이에서 발생한다. 지하수위 위쪽 지반의 간극수압은 대기압에 대하여 음의 값을 갖는다. 이러한 모관흡수력의 존재와 크기는 사면의 안정성에 크게 기여하는 것으로 밝혀졌다. 따라서, 계절적 강우에 의한 풍화토 사면의 얕은 파괴기구(failure mechanism)를 규명하기 위해서는 비포화대에서의 모관흡수력 분포를 예측하는 것이 필수적이다. 이 연구에서는 2001년 6월부터 8월까지 화강풍화토 사면에서 모관흡수력 및 체적함수비를 현장 모니터링 하였으며, 대상지반에 대한 투수해석을 수행하였다. 현장 모니터링 결과, 기후조건의 영향력은 깊이에 따라 감소하는 경향을 보였으며 강우침투에 의한 지반내 모관흡수력의 감소는 강우량 및 강우지속시간 뿐만 아니라 강우직전의 모관흡수력 분포에도 큰 영향을 받고 있는 것으로 나타났다. 모니터링된 모관흡수력과 체적함수비를 이용하여 현장 흙-수분특성을 얻을 수 있었는데 습윤경로(wetting path)에 가까운 분포를 보였다.

보 구조물의 파이핑 안정성 모니터링 방안 기초 연구 (A Basic Study on the Piping Stability Monitoring Method of Weir Structure)

  • 하익수
    • 한국지반공학회논문집
    • /
    • 제39권9호
    • /
    • pp.51-61
    • /
    • 2023
  • 본 연구의 목적은 보 구조물 기초지반의 파이핑 안정성을 모니터링할 수 있는 지표를 선정하고, 선정 지표를 활용한 파이핑 안정성 모니터링 방법을 제시하는 데에 있다. 기존 연구 결과에 대한 검토와 침투모사 수치해석 결과로부터 보 기초지반에서의 간극수압 변화를 파이핑 모니터링 지표로 선정하였다. 운영 중인 보에서 간극수압계의 설치 상황을 감안하여, 간극수압계가 보 기초 하부에 1개 또는 2개 설치된 경우 각각에 대해, 다양한 상류 저수위 조건에 따른 침투해석을 수행하였다. 침투해석 결과로부터 파이핑 모니터링 방안을 이러한 각각의 경우에 대하여 제안하였다. 아울러, 제안된 모니터링 방안을 운영 중인 보에 시범 적용하였고 이를 통해 그 실효성을 확인하였다.

고결(Cementation)에 의한 모래의 지반공학적 특성 변화 (Change of Geotechnical Properties of Sand due to Cementation)

  • 이문주;김승한;최성근;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.153-160
    • /
    • 2006
  • In this study, the change of getechnical properties of sand due to cementation was investigated by undrained triaxial test of isotropicallv consolidated sample. For inducing the cementation, $5\sim20%$(sand weight) gypsum were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased and also the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. Generally the degree of cementation exerted more influence on the behavior of cemented sand than the relative density.

  • PDF

부산점토의 변형률 속도 의존적인 압밀특성 (Strain-rate-dependent consolidation characteristics of Busan clay)

  • 김윤태;조상찬;조기영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.240-247
    • /
    • 2005
  • In order to analyze effects of strain rate on consolidation characteristics on Busan clay, a series of constant rate of strain(CRS) consolidation tests with different strain rate and incremental loading test(ILT) were performed. From experimental test results, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurred during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendancy to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure without change of total stress was noted on the incremental loading test after the end of loading.

  • PDF

부산점토의 변형률 속도 의존적인 압밀특성 (Strain-rate-dependent Consolidation Characteristics of Busan Clay)

  • 김윤태;조상찬;조기영
    • 한국지반공학회논문집
    • /
    • 제21권6호
    • /
    • pp.127-135
    • /
    • 2005
  • 부산점토에 대한 변형률 속도 의존적인 압밀특성을 분석하기 위해 다양한 변형률 속도의 일정 변형률(CRS) 압밀시험과 하중제어 압밀시험을 수행하였다. 부산점토에 대한 실내시험 결과에서 선행압밀하중은 압밀과정 동안에 유발되는 변형률 속도에 의존적이고 선행압밀하중에 대해 정규화시킨 압밀곡선은 유일하다는 것을 알 수 있었다. CRS 시험에서 얻어진 압밀계수 및 투수계수는 정규압밀영역에서 변형률 속도에 관계없이 일정한 값에 수렴함을 알 수 있었다. 또한 하중제어 압밀시험을 통해서 전응력이 일정한 상태에서 간극수압이 증가하는 Mandel-Cryer 효과를 볼 수 있었다. 그리고 장시간의 하중제어 압밀시험을 통해 선행압밀하중 부근에서 흙 구조의 붕괴로 인하여 급격한 간극수압의 증가현상이 관찰되었다.

The Effect of Micro-Pore Configuration on the Flow and Thermal Fields of Supercritical CO2

  • Choi, Hang-Seok;Park, Hoon-Chae;Choi, Yeon-Seok
    • Environmental Engineering Research
    • /
    • 제17권2호
    • /
    • pp.83-88
    • /
    • 2012
  • Currently, the technology of $CO_2$ capture and storage (CCS) has become the main issue for climate change and global warming. Among CCS technologies, the prediction of $CO_2$ behavior underground is very critical for $CO_2$ storage design, especially for its safety. Hence, the purpose of this paper is to model and simulate $CO_2$ flow and its heat transfer characteristics in a storage site, for more accurate evaluation of the safety for $CO_2$ storage process. In the present study, as part of the storage design, a micro pore-scale model was developed to mimic real porous structure, and computational fluid dynamics was applied to calculate the $CO_2$ flow and thermal fields in the micro pore-scale porous structure. Three different configurations of 3-dimensional (3D) micro-pore structures were developed, and compared. In particular, the technique of assigning random pore size in 3D porous media was considered. For the computation, physical conditions such as temperature and pressure were set up, equivalent to the underground condition at which the $CO_2$ fluid was injected. From the results, the characteristics of the flow and thermal fields of $CO_2$ were scrutinized, and the influence of the configuration of the micro-pore structure on the flow and scalar transport was investigated.

2차원 분리퇴적에 의한 준설토의 성상에 관한 연구 (A Study on the Property of Dredging Soils Stratified by Two dimensional Segregating Sedimentation)

  • 김형주;심민보;전혜선;이민선;백필순;최대일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.481-489
    • /
    • 2006
  • Two dimensional diffusion model test was conducted to investigate the sedimentation properties and consolidation process of reclaimed ground using dredging coarse soil which is composed of passing amount 20 percentage and 45 percentage of #200 sieve size respectively. The passing amount of #200 sieve size affected on sedimentation properties. The coarse soil which is passing amount of 20 percent showed that the sedimentation structure was layered type and passing amount of 45 percentage was wall-partition type according diffusion distance. Furthermore, the water content of surface and section, and distribution of fine soil were changed according to diffusion distance. and the change amount of pore water pressure and strength property when soil is diffused, segregated and accumulated can be applied efficiently in design of dredging and reclamation.

  • PDF

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • 지질공학
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

Study on relations between porosity and damage in fractured rock mass

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.15-24
    • /
    • 2015
  • The porosity is often regarded as a linear function of fluid pressure in porous media and permeability is approximately looked as constants. However, for some scenarios such as unconsolidated sand beds, abnormal high pressured oil formation or large deformation of porous media for pore pressure dropped greatly, the change in porosity is not a linear function of fluid pressure in porous media, and permeability can't keep a constant yet. This paper mainly deals with the relationship between the damage variable and permeability properties of a deforming media, which can be considered as an exploratory attempt in this field.