Strain-rate-dependent Consolidation Characteristics of Busan Clay

부산점토의 변형률 속도 의존적인 압밀특성

  • Kim Yun-Tae (Dept. of Ocean Engrg., Pukyong National Univ.,) ;
  • Jo Sang-Chan (Dept. of Ocean Engrg., Pukyong National Univ.,) ;
  • Jo Gi-Young (Busan Urban Dvelopment Corporation)
  • 김윤태 (부경대학교 해양공학과) ;
  • 조상찬 (부경대학교 해양공학과) ;
  • 조기영 (부산광역시 도시개발공사)
  • Published : 2005.08.01

Abstract

In order to analyze effects of strain rate on consolidation characteristics of Busan clay, a series of constant rate of strain (CRS) consolidation tests with different strain rate and incremental loading tests (ILT) were performed. From experimental test results on Busan clay, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurring during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendency to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure was observed after the end of loading without change of total stress on the incremental loading test, which phenomenon is called Mandel-Cryer effect. It was also found that rapid generation of excess pore pressure took place due to collapse of soil structure as effective stress approached to preconsolidation pressure.

부산점토에 대한 변형률 속도 의존적인 압밀특성을 분석하기 위해 다양한 변형률 속도의 일정 변형률(CRS) 압밀시험과 하중제어 압밀시험을 수행하였다. 부산점토에 대한 실내시험 결과에서 선행압밀하중은 압밀과정 동안에 유발되는 변형률 속도에 의존적이고 선행압밀하중에 대해 정규화시킨 압밀곡선은 유일하다는 것을 알 수 있었다. CRS 시험에서 얻어진 압밀계수 및 투수계수는 정규압밀영역에서 변형률 속도에 관계없이 일정한 값에 수렴함을 알 수 있었다. 또한 하중제어 압밀시험을 통해서 전응력이 일정한 상태에서 간극수압이 증가하는 Mandel-Cryer 효과를 볼 수 있었다. 그리고 장시간의 하중제어 압밀시험을 통해 선행압밀하중 부근에서 흙 구조의 붕괴로 인하여 급격한 간극수압의 증가현상이 관찰되었다.

Keywords

References

  1. 김영수, 이상웅, 김대만, 현영환 (2004), 'Aging Effect를 고려한 점성토의 압밀특성', 한국지반공학회 논문집, 제20권, 제6호, pp.109-118
  2. 김윤태, S. Leroueil (1999), '자연점토의 변형률속도 의존적인 압밀거동의 해석', 한국지반공학회 논문집, 제15권, 제6호
  3. 김윤태 (2003), '지반개량 및 미개량 연약지반의 해석', 한국지반공학회 연약지반 기술위원회 2003 학술세미나, Seoul, Korea, pp.73-95
  4. 이우진, 임형덕, 이원제 (1998), '일정변형률 및 표준압밀시험을 이용한 해성점토의 압밀특성 연구', 한국지반공학회, 제14권, 제4호
  5. 이 송, 박중배, 채점식 (2001), '연속재하압밀시험방법에 따른 점성토 지반의 압밀특성', 대한토목학회 논문집, 제21권, 3-C호 pp.299-309
  6. ASTM Designation, D4186-82, Standard Test Method for One dimensional Consolidation Properties of Soils using Controlled Strain, Loading
  7. Becker, D.E., Jefferies, M.G., Shinde, S.B., and Crooke, J.H.A. (1985), 'Porewater pressures in clays below caisson islands', In Proceeding of Arctic '85: Civil Engineering in the Arctic Offshore, San Francisco. pp.75-83
  8. Bjerrum, L. (1967), 'Engineering geology of normally consolidated marine clays as related to the settlements of buildings', Geotechnique, Vol.17, No.2, pp.83-119 https://doi.org/10.1680/geot.1967.17.2.83
  9. Casagrande, A. (1936), 'The Determination of the Preconsolidation Load and Its Practical Significance', Proceedings of 1st ICSMFE, Cambridge, Vol.3, pp.60-64
  10. Chang, Y.C.E. (1981), 'Long term consolidation beneath the test fill at Vasby, Sweden', Swedish Geotechnical Institute, Report 13, Linkoping, Sweden
  11. Crawford, C.B. (1965), 'The resistance of soil structure to consolidation', Canadian Geotechnical Journal, VoI.2(2), pp.90-97 https://doi.org/10.1139/t65-010
  12. Crawford, C. B.: State of the Art-Evaluation and Interpretation of Soil Consolidation Tests, Consolidation of Soil: Testing and Evaluation, ASTM STP 892, R.N. Yong and F.C. Townsend
  13. Janbu, N. (1969), 'The resistance Concept Applied to Deformation of Soils', Proceedings of 6th lCSMFE, Mexico city, Vol.1, pp.191-196
  14. Jun-Gao Zhu and Jian-Hua Yin (2001), 'Deformation and pore-water pressure of elastic viscoplastic soil', J. Engrg. Mech., Volume 127, Issue 9, pp.899-908 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:9(899)
  15. Kabbaj, M., Tavenas, F., and Leroueil, S. (1988), 'In situ and laboratory stress-strain relationships', Geotechnique 38, No.1, pp. 83-100 https://doi.org/10.1680/geot.1988.38.1.83
  16. Leroueil, S., M. Kabbaj, and F. Tavenas (1998), 'Study of the validity of ${\sigma}'-{\epsilon}_{\upsilon}-{\dot{epsilon}}_{\upsilon}$ model in in situ conditions', Soils and Foundations, Vol.28, No.3, pp.13-25
  17. Leroueil, S., and Kabbaj, M., and Tavenas, F., and Bouchard, R. (1985), 'Stress-strain-strain rate relation for the compressibility of natural sensitive clays', Geotechnique, 35(2), 159-180 https://doi.org/10.1680/geot.1985.35.2.159
  18. Oikawa, H. (1987), 'Compression curve of soft soils', Soils and Foundations, Vol.27, No.3, pp.519-539
  19. Schiffinan, R. L., Chen, T.-F. A., and Jordan, J. C. (1969), 'An analysis of consolidation theory', J. Soil Mech. and Found. Div., ASCE, 95(1), 285309
  20. Taylor, D.W. (1942), Research on consolidation of clays, Series 82, MIT, Cambridge, Mass
  21. Yin, J.-H., Clark, J. I., Blasco, B. M., and Graham, J. (1993), 'Mechanismand modeling of abnormal excess orewater pressure in clays and applications in offshore engineering', Proc., 4th Can. Conf. Marine Geotech, Engrg., Vol.2, 401424
  22. Yoshikuni H., Nishiumi H., Ikegami S., and Seto K. (1994), 'The creep and effective stress-relaxation behavior on one-dimensional consolidation (in Japanese)', 29th Japan National Conf. on Soil Mechanics and Found. Engrg., Vol.29, pp.269-270
  23. Yoshikuni H., Nishiumi H., Ikegami S., and Seto k. (1994), The creep and effective stress relaxation behavior on one-dimentional consolidation (in japanese), 29th Japan National Conf. on soil Mechanics and Found. Engrg., Vol.29, pp.269-270
  24. Wissa, A.E.Z.,Christian, J.T.,Davis, E.H. and Heilberg, S. (1971), Consolidation at Constant Rate of Strain, Journal of Soil Mechanics and Foundation Division, ASCE, Vol.97, No.SM10, pp.1393-1413