• Title/Summary/Keyword: pore development

Search Result 517, Processing Time 0.026 seconds

Development of Seepage Monitoring and Analysis Method with the Hydraulic Head Loss Rate in Sea Dike (수두손실률에 의한 방조제 침투류 감시 및 해석 기법 개발)

  • Eam, Sung Hoon;Heo, Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.1-9
    • /
    • 2014
  • In this study the pore water pressures were measured in sea dike constructed with the sand dredged in the sea, and they were analyzed with the hydraulic head loss rate to estimate quantitatively the state of blocking seepage in the sea dike embankment. Blocking state was expressed as the number between 0 and 1. the number of 1 means the state of perfectly blocking seepage and the number of 0 means the state of sea water being passing free. The deeper the installed position was the lower the hydraulic head loss rate was and the longer the seepage path length was the higher the hydraulic head loss rate was. The estimated R-squareds were close to 1, which means that the embankment was steady state without movement of soil particles.

Numerical Calculation of High Pressure Compaction for Porous Materials (높은 압력을 받는 다공질재료의 압축에 대한 수치해석적 연구)

  • 박종관
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1987
  • A practical constitutive equation with sufficient generality is proposed for porous materials to deal with plastic pore compaction and pore related strain-hardening. With an application of this proposed model, finite element calculations are executed for the compaction of a porous material. Results show powerful potential of finite element method in a quantitative investigation of the process of the compaction. Special attention is given to the process of unloading during which the development of tensile principal stress may lead to phenomena such as lamination and end-capping.

  • PDF

Development of Large Calibration Chamber System (Large Calibration Chamber의 개발)

  • 정충열;김태준;김대규;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.673-678
    • /
    • 2002
  • Laboratory calibration chamber tests for cone penetrometers, pressuremeters and dilatometers in cohesionless soil specimens have been conducted by numerous researchers. However, there have been only few applications to compacted or preconsolidated cohesive soils. Therefore, for the first time, Calibration Chamber System was developed in Korea University. This can be attributed to the extremely time consuming and laborious process involved in the preparation of large cohesive soil specimens in addition to other complexities involving instrumentation for pore pressure monitoring and the need for maintaing saturation by back pressure. Chamber System with similar principle as LSU Chamber System was made of more strengthen and complementary form by increasing system diameter(1.2m), carrying out 1st and 2nd consolidation process in one system for smooth and safe work, accurate Data Aquisition.

  • PDF

Heating Properties and Pore structure of Cementitious Joint by Induction Heating (시멘트계 접합부의 유도가열에 의한 승온특성 및 공극구조)

  • Kang, Dong-Woo;Ahn, Jae-Cheol;Kim, Jung-Kil;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.3-4
    • /
    • 2011
  • The purpose of this study is to suggest basic data for development optimal disassembly manufacturing system during analysis pore structure and heating properties of cementitious joint using conductive resister by induction heating. From the results, we knew cementitious joint is weak easily by heating of conductive resister, such as wire mesh, punching metal, and steel fiber, from induction heating.

  • PDF

Fabrication and characterization of 3-D porous scaffold by polycaprolactone (폴리카프로락톤을 이용한 3차원 다공성 지지체 제조 및 특성 분석)

  • Kim, Jin-Tae;Bang, Jung Wan;Hyun, Chang-Yong;Choi, Hyo Jeong;Kim, Tae-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • This study was a preparatory experiment aimed the development of membrane scaffolds for tissue engineering. A PCL composite solution contained sodium chloride(NaCl). PCL porous membrane scaffolds were formed on a glass casting plate using a film applicator and immersed in distilled water to remove the NaCl reaching after drying. NaCl was used as a pore former for a 3 dimensional pore net-work. The dry condition parameters were $4^{\circ}C$, room temperature (RT) and $40^{\circ}C$ for each different temperatures in the drying experiment. SEM revealed the morphology of the pores in the membrane after drying and evaluated the in vitro cytotoxicity for basic bio-compatibility. The macro and micro pores existed together in the scaffold and showed a 3-dimensional pore net-working morphology at RT. The in vitro cytotoxicity test result was "grade 2" in accordance with the criterion for cytotoxicity by ISO 10993-5. The dry condition affected the formation of a 3 dimensional pore network and micro and macro pores. Therefore, these results are expected provide the basic process for the development of porous membrane scaffolds to control degradation and allow drug delivery.

Development and Applications of Pore-filled Ion-exchange Membranes (세공충진 이온교환막의 개발 및 응용)

  • Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.307-319
    • /
    • 2018
  • Ion-exchange membrane (IEM) has fixed charge groups and is a separation membrane which is capable of selectively transporting ions of the opposite polarity. Recently, the interest in IEMs has been increasing as the importance of the desalination and energy conversion processes using them as the key components has increased. Since the IEMs determine the efficiency of the above process, it is necessary to improve the separation performance and durability of them and also to lower the expensive membrane price, which is a hindrance to the widening application of the IEM process. Therefore, it is urgent to develop high-performance and low-cost IEMs. Among various types of IEMs, pore-filled membranes prepared by filling ionomer into a porous polymer substrate are intermediate forms of homogeneous membranes and heterogeneous membranes. The production cost would be cheap like the case of heterogeneous membranes because of the use of inexpensive supports and the reduction of the amount used of raw materials, and at the same time, they exhibit excellent electrochemical characteristics close to homogeneous membranes. In this review, major research and development trends of pore-filled IEMs, which are attracting attention as high-performance and low-cost IEMs, have been summarized and reported according to the application fields.

Two-Pore Domain $K^+$ Channels Expressed in Mammalian Reproductive Cells and Organs (포유동물 생식세포 및 생식기관에서 발현되는 Two-Pore Domain 칼륨 통로)

  • Lee, Hyo-Zhin;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.189-197
    • /
    • 2009
  • Two-pore domain $K^+(K_{2P})$ channels contribute to setting the resting membrane potential in excitable and nonexcitable cells. However, the cellular or tissue distribution and function of $K_{2P}$ channels expressed in mammalian germ cells and reproductive organs have not yet been reviewed by researchers. In this review, we focus on expression, localization and expected properties of $K_{2P}$ channels in germ cells and reproductive organs. The $K_{2P}$ channels are expressed in human cytotrophoblast cells, myometrium, placental vascular system, uterine smooth muscle, and pregnant term tissue, suggesting that $K_{2P}$ channels might be involved in the processes of pregnance. The $K_{2P}$ channels are also expressed in mouse zygotes, monkey sperm, ovary, testis, germ cells, and embryos of Korean cattle. Interestingly, $K_{2P}$ channels are modulated by changes in temperature and oxygen concentration which play an important role in embryonic development. Also, $K_{2P}$ channels are responsible for $K^+$ efflux during apoptotic volume decreases in mouse zygotes. These expression patterns and properties of the $K_{2P}$ channels in reproductive organs and germ cells are likely to help the understanding of ion channel-related function in reproductive physiology.

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.

Preparation and Characterization of Polyacrylonitrile-based Porous Carbon Nanofibers Activated by Zinc Chloride (염화아연에 의해 활성화된 폴리아크릴로나이트릴계 다공성 탄소나노섬유의 제조 및 특성)

  • Lee, Hye-Min;Bae, Kyong-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.370-374
    • /
    • 2013
  • The effects of zinc chloride addition on pore development of porous carbon nanofibers prepared by polyacrylonitrile (PAN)/ N,N'-dimethylformamide (DMF) (10 wt%) electrospinning were investigated. The change of morphological and structural modification by zinc chloride activation was investigated by a scanning electron microscopy (SEM) analysis. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller (BET) and Horvath-Kawazoe (H-K) equations, and the curves showed the Type I mode in the International Union of Pore and Applied Chemistry (IUPAC) classification, indicating that lots of micropores exist in the sample. In addition, specific surface areas and total pore volumes of porous carbons prepared by the zinc chloride activation were determined as 600~980 $m^2/g$ and 0.24~0.40 $cm^3/g$, respectively. As experimental results, many holes or demolished structures were found on the fiber surfaces after the zinc chloride activation as confirmed by a SEM analysis. It was also observed that various pore sizes were found to be depended on the adding content of zinc chloride in PAN/DMF solution in this system.

Processes and Fluxes of Uranium Removal Across the Sediment-Water Interface: A Biogeochemical Approach (해수-퇴적물 경계면을 지나는 우라늄 제거 과정과 플럭스 연구: 생지화학적 접근)

  • Kim, Kee-Hyun;Cho, Jin-Hyung;Lee, Jae-Seong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.188-197
    • /
    • 1999
  • In order to estimate the uranium flux from seawater to sediments, we took pore water samples and deployed benthic chambers on seafloor of Chonsu Bay, Korea. The uranium flux across the sediment-water interface was estimated from the pore water to be 0.112-0.566 mg/$m^2yr$, corresponding to a removal flux of $4.3-21.5{\times}10^7$ gU/yr for the entire Yellow Sea. Nutrient fluxes from sediment to bottom water were estimated to be 135.6 mmol/$m^2yr$ for ammonia, 228.2 mmol/$m^2yr$ for nitrate, 36.8 mmol/$m^2yr$ for phosphate and 23.9 mmol/$m^2yr$ for silicate. The redox boundary, based on the distribution of pore water nitrate and solid phase manganese, was located at 3-5 cm below the sediment surface. Phosphate flux obtained by benthic chambers was 28.S mmol/$m^2yr$. On the other hand, estimates of uranium and silicate fluxes were orders of magnitude greater than those based on pore water profiles. Flux estimates on the basis of pore water concentration is believed to have greater reliability than those obtained from benthic chamber data.

  • PDF