Preparation and Characterization of Polyacrylonitrile-based Porous Carbon Nanofibers Activated by Zinc Chloride

염화아연에 의해 활성화된 폴리아크릴로나이트릴계 다공성 탄소나노섬유의 제조 및 특성

  • Lee, Hye-Min (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Bae, Kyong-Min (Department of Chemistry, Inha University) ;
  • Kang, Hyo-Rang (Samsung Advanced Institute of Technology) ;
  • An, Kay-Hyeok (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
  • 이혜민 (한국탄소융합기술원 연구개발본부) ;
  • 배경민 (인하대학교 화학과) ;
  • 강효랑 (삼성종합기술원) ;
  • 안계혁 (한국탄소융합기술원 연구개발본부) ;
  • 김홍건 (전주대학교 탄소융합공학과) ;
  • 김병주 (한국탄소융합기술원 연구개발본부)
  • Published : 2013.08.10

Abstract

The effects of zinc chloride addition on pore development of porous carbon nanofibers prepared by polyacrylonitrile (PAN)/ N,N'-dimethylformamide (DMF) (10 wt%) electrospinning were investigated. The change of morphological and structural modification by zinc chloride activation was investigated by a scanning electron microscopy (SEM) analysis. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller (BET) and Horvath-Kawazoe (H-K) equations, and the curves showed the Type I mode in the International Union of Pore and Applied Chemistry (IUPAC) classification, indicating that lots of micropores exist in the sample. In addition, specific surface areas and total pore volumes of porous carbons prepared by the zinc chloride activation were determined as 600~980 $m^2/g$ and 0.24~0.40 $cm^3/g$, respectively. As experimental results, many holes or demolished structures were found on the fiber surfaces after the zinc chloride activation as confirmed by a SEM analysis. It was also observed that various pore sizes were found to be depended on the adding content of zinc chloride in PAN/DMF solution in this system.

본 연구에서는 염화아연의 첨가에 따른 다공성 탄소나노섬유의 제조 시 기공발달에 미치는 영향을 알아보기 위해 10wt%로 제조된 폴리아크릴로나이트릴/디메틸포름아미드 용액을 전기방사 방법을 통해 나노섬유 부직포로 제조하였다. 염화아연에 의해 활성화된 다공성 탄소나노섬유의 표면구조는 주사전자현미경(Scanning Electron Microscope, SEM)을 이용해 관찰하였으며, $N_2/77$ K 등온 흡착특성은 Brunauer-Emmett-Teller (BET)식과 Horvath-Kawazoe (H-K)식을 이용하여 기공특성 분석을 시도하였다. 실험결과 제조된 다공성 탄소나노섬유의 $N_2$ 등온흡착선들은 International Union of Pore and Applied Chemistry (IUPAC)의 분류에서 Type I으로서 주로 미세공들로 이루어져 있음을 알 수 있었다. 염화아연에 의해 활성화된 다공성 탄소나노섬유의 비표면적은 600~980 $m^2/g$으로 분석되었으며, 세공용적은 0.24~0.40 $cm^3/g$로 각각 분석되었다. 또한 주사전자현미경의 분석 결과 활성화로 인하여 표면에 형성되어 있는 많은 세공과 균열이 관찰되었으며, 이러한 결과로부터 염화아연의 첨가가 다공성 탄소나노섬유의 비표면적 증가에 유효한 역할을 하는 것으로 확인되었다.

Keywords

References

  1. T. Depci, A. R. Kul, and Y. Onal, Chem. Eng. J., 200, 224 (2012).
  2. F. Boudrahem, A. Soualah, and F. A. Benissad, J. Chem. Eng. Data., 56, 1946 (2011). https://doi.org/10.1021/je1009569
  3. J. Y. Cheng, L. Yang, L. Dong, X. L. Long, and W. K. Yuan, J. Ind. Eng. Chem., 18, 1628 (2012). https://doi.org/10.1016/j.jiec.2012.02.025
  4. M. Sharon and M. Sharon, Carbon Lett., 13, 161 (2012). https://doi.org/10.5714/CL.2012.13.3.161
  5. R. Farma, M. Deraman, A. Awitdrus, I. A. Talib, E. Taer, N. H. Basri, J. G. Manjunatha, M. M. Ishak, B. N. M. Dollah, and S. A. Hashmi, Bioresour. Technol., 132, 254 (2013). https://doi.org/10.1016/j.biortech.2013.01.044
  6. C. Ma, Y. Song, J. L. Shi, D. Zhang, M. Zhong, Q. Guo, and L. Liu, Mater. Lett., 76, 211 (2012). https://doi.org/10.1016/j.matlet.2012.02.100
  7. C. T. Lee, J. Ind. Eng. Chem., 18. 433 (2013).
  8. W. Jo, M. Oh, J. Kim, and S. Kim, Korean Chem. Eng. Res., 48, 673 (2010).
  9. S. Wang, J. Z. H. Zhang, H. Zhao, and W. Liu, J. Electrochem. Sci., 7, 11264 (2012).
  10. J. H. Shin, S. G. Lim, S. K. Kim, D. H. Peck, B. R. Lee, and D. H. Jung, Korean Chem. Eng. Res., 49, 769 (2011). https://doi.org/10.9713/kcer.2011.49.6.769
  11. J. Zeng, H. Zhu, and J. Kong, Adv. Mater. Res., 634, 2170 (2013).
  12. X. Zhu, Y. Fu, G. Hu, Y. Shen, W. Dai, and X. Hu, Water Air Soil Pollut., 224, 1387 (2012).
  13. Y. N. Chun, M. S. Lim, and K. Yoshikawa, J. Ind. Eng. Chem., 18, 839 (2012). https://doi.org/10.1016/j.jiec.2011.11.144
  14. H. R. Yu, S. h. Cho, M. J. Jung, and Y. S. Lee, Micropor. Mesopor. Mater., 172, 131 (2013). https://doi.org/10.1016/j.micromeso.2013.01.018
  15. M. H. Baek, W. C. Jung, J.W. Yoon, J. S. Hong, Y. S. Lee, and J. K. Suh, J. Ind. Eng. Chem., 19, 469 (2013). https://doi.org/10.1016/j.jiec.2012.08.026
  16. M. J. Jung, E. G. Jeong, Y. S. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 1315 (2013). https://doi.org/10.1016/j.jiec.2012.12.034
  17. N. Yusof, A. F. Ismail, D. Rana, and T. Matsuura, Mater. Lett., 82, 16 (2012). https://doi.org/10.1016/j.matlet.2012.04.150
  18. W. Pan and J. Gong, Key Eng. Mater., 512, 45 (2012).
  19. L. Borah, K. K. Senapati, C. Borgohain, S. Sarma, S. Roy, and P. Phukan, J. Porous Mater., 19, 767 (2012). https://doi.org/10.1007/s10934-011-9529-y
  20. X. He, R. Li, J. Qiu, K. Xie, P. Ling, M. Yu, X. Zhang, and M. Zheng, Carbon, 50, 4911 (2012). https://doi.org/10.1016/j.carbon.2012.06.020
  21. G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, and J. Qiu, Electrochim. Acta, 69, 65 (2012). https://doi.org/10.1016/j.electacta.2012.02.066
  22. W. Shen and W. Fan, J. Mater. Chem. A, 1, 999 (2013). https://doi.org/10.1039/c2ta00028h
  23. C. Y. Qing, W. R. Ping, and Y. X. Feng, Chin. J. Struct. Chem., 31, 3 (2012).
  24. W. Dong, X. Chen, Y. Wu, C. Zhao, and C. L. Liu, Energ. Fuel., 26, 6040 (2012). https://doi.org/10.1021/ef3006146
  25. M. Manoochehri, A. Khorsand, and E. Hashemi, Carbon Lett., 13, 167 (2012). https://doi.org/10.5714/CL.2012.13.3.167
  26. C. Kim, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, Y. J. Kim, M. Endo, and S. C. Yang, Adv. Mater., 19, 2341 (2007). https://doi.org/10.1002/adma.200602184
  27. L. W. Ji and X. W. Zhang, Electrochem. Commun., 11, 684 (2009). https://doi.org/10.1016/j.elecom.2009.01.018
  28. S. Brunauer, P. H. Emmet, and W. E. Teller, J. Am. Chem. Soc., 60, 309 (1938). https://doi.org/10.1021/ja01269a023
  29. G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn., 16, 470 (1983). https://doi.org/10.1252/jcej.16.470
  30. E. J. J. Regalado, C. C. R. Vallejo, H. M. Textle, R. Guerrero, and J. F. E. Muñoz, J. Mex. Chem. Soc., 56, 139 (2012).
  31. S. Sakai, K. Kawakami, and M. Taya, J. Chem. Eng. Jpn., 45, 436 (2012). https://doi.org/10.1252/jcej.11we249
  32. S. Brunauer, L. S. Deming, E. W. Deming, and E. Teller, J. Am. Chem. Soc., 62, 1723 (1940). https://doi.org/10.1021/ja01864a025
  33. K. Kaneko, C. Ishii, M. Ruike, and H. Kuwabara, Carbon, 30, 1075 (1992). https://doi.org/10.1016/0008-6223(92)90139-N
  34. J. S. Roh, Korean J. Mater. Res., 13, 742 (2003). https://doi.org/10.3740/MRSK.2003.13.11.742