• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.023 seconds

Numerical Investigation of Load Carrying Capacity of Geogrid-Encased Stone Columns under Foundation Load (구조물 기초하중 작용시 지오그리드 보강 쇄석말뚝의 하중지지 특성에 관한 수치해석 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.75-86
    • /
    • 2009
  • This paper presents the results of a numerical investigation on load carrying capacity of geogrid-encased stone columns to use as load carrying column(s) supporting a foundation load. A validated 3D stress-pore pressure coupled model that can effectively show rapid drainage capability of stone columns and encasement effect of geogrid was adopted and a parametric study was carried out on a number of influencing factors. It is shown that the geogrid encased stone columns can be effectively used as foundation load supporting columns in soft ground. The results of numerical investigation were presented so that the relationship between the load carrying capacity of geogrid-encased stone columns and the influencing factors can be identified. Practical implications of the findings are also discussed.

Evaluation of the Dynamic P-Y Curves of Soil-Pile System in Liquefiable Ground (액상화 가능성이 있는 지반에 놓인 지반-말뚝 시스템의 동적 p-y 곡선 연구)

  • Han, Jin-Tae;Kim, Sung-Ryul;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.141-147
    • /
    • 2007
  • Various approaches have been developed for the dynamic response analysis of piles. In one of the approaches, the soil-pile interaction is approximated by using parallel nonlinear springs, namely the p-y curves. Currently available p-y curve recommendations are based on static and cyclic lateral load tests. Other researchers have attempted to extend the p-y curves by incorporating the effects of liquefaction on soil-pile interaction and derived scaling factors of p-y curves to account fur the liquefaction. However, opinions on the scaling factors vary. In this study, the sealing factors, which reflect the variation of the elastic moduli of surrounding soils, were established combining the relationship between excess pore pressures and the natural frequencies of a soil-pile system obtained from Ig shaking table tests and the relationship between the elastic moduli of surrounding soils and the natural frequencies of a soil-pile system obtained from numerical analyses. As a result, the scaling factors were presented in an exponential function.

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures (나노허니컴 구조물의 인장 및 굽힘 물성 측정)

  • Jeon, Ji-Hoon;Choi, Duk-Hyun;Lee, Pyung-Soo;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.23-31
    • /
    • 2006
  • We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers (표면 처리에 따른 입상활성탄 및 활성탄소섬유의 중금속 흡착)

  • Kang, Kwang Cheol;Kwon, Soo Han;Kim, Seung Soo;Choi, Jong Won;Chun, Kwan Sik
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.285-289
    • /
    • 2006
  • In this study, the effect of an acidic treatment on granular activated carbon (GAC) and activated carbon fibers (ACF) was investigated for a $Pb^{2+}$ and $Ni^{2+}$ ion adsorption. 1.0 M nitric acid solution was used as the acid solution for the surface treatment. Surface properties of the GAC and ACF were characterized by the pH, elemental analysis and pHpzc (pH of the point of zero charge). Their specific surface area and the pore structure were also evaluated by the nitrogen adsorption data at 77K. As a result, the acidic treatment led to an increase of the oxygen-containing functional groups. Furthermore, the adsorption capacity of the acid-treated GAC and ACF was improved in the order of acidic-ACF > untreated-ACF > acidic-GAC > untreated-GAC, though the decrease in specific surface area induced by a pore blocking of the functional groups was observed.

Analysis on the Effects of Filter Shape and Magnetic Force on the Collecting Efficiency of Welding Spatter (필터 형상과 자력 특성이 용접 불티 포집 효율에 미치는 영향 분석)

  • Yeon-Je Shin;SooHyun So;WooJun You
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.593-600
    • /
    • 2024
  • Purpose: In this study, fundamental research was conducted to capture sparks generated during the arc welding process. Method: To this end, a mock-up collection device was developed, consisting of a blower for suction, a nozzle, and a filter and magnet at the suction point. To analyze the correlation between the shape of the filter and its magnetic properties, the porosity and pore size of both carbon filters and Colgate filters were quantified under conditions of a welding machine capacity of 1,800W and a welding time of 70s. The collection efficiency of sparks was calculated for magnetic strengths of 2.6, 3.4, and 4.05kgf. Result and Conclusion: As a result, empirical formulas were derived for the blower's suction capacity, magnetic strength, porosity, and pore diameter for capturing sparks, with experimental results confirming consistency within ± 10%. The findings of this study are expected to provide a quantitative design approach for collection devices that can minimize the risk of fire spread associated with welding operations at construction sites.

Numerical Simulation of Nonlinear Interaction between Composite Breakwater and Seabed under Irregular Wave Action by olaFlow Model (olaFlow 모델에 의한 불규칙파 작용하 혼성방파제-해저지반의 비선형상호작용에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Jung, Uk Jin;Choi, Goon-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-145
    • /
    • 2019
  • For the design of composite breakwater as representative one of the coastal and harbor structures, it has been widely discussed by the researchers about the relation between the behavior of excess-pore-water pressure inside the rubble mound and seabed caused by the wave load and its structural failure. Recently, the researchers have tried to verify its relation through the numerical simulation technique. The above researches through numerical simulation have been mostly applied by the linear and nonlinear analytic methods, but there have been no researches through the numerical simulation by the strongly nonlinear mutiphase flow analytical method considering wave-breaking phenomena by VOF method and turbulence model by LES method yet. In the preceding research of this study, olaFlow model based on the mutiphase flow analytical method was applied to the nonlinear interaction analysis of regular wave-composite breakwater-seabed. Also, the same numerical techniques as preceding research are utilized for the analysis of irregular wave-composite breakwater-seabed in this study. Through this paper, it is investigated about the horizontal wave pressures, the time variations of excess-pore-water pressure and their frequency spectra, mean flow velocities, mean vorticities, mean turbulent kinetic energies and etc. around the caisson, rubble mound of the composite breakwater and seabed according to the changes of significant wave height and period. From these results, it was found that maximum nondimensional excess-pore water pressure, mean turbulent kinetic energy and mean vorticity come to be large equally on the horizontal plane in front of rubble mound, circulation of inflow around still water level and outflow around seabed is formed in front of rubble caisson.

Analysis of the Formation of Porosity and Segregation in $Al_2O_3/Al$ Composites by Squeeze Infiltration Method (가압함침법에 의한 $Al_2O_3/Al$ 복합재료의 기공 및 편석의 발생에 대한 분석연구)

  • Seo, Young-Ho;Lee, Hyoung-Kook
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.163-178
    • /
    • 2001
  • The squeeze infiltration process is potentially of considerable industrial importance. The performance enhancements resulting from incorporation of short alumina fiber into aluminum are well documented. These are particularly significant for certain automobile components. Aluminum matrix composite automotive parts, such as diesel engine pistons or engine blocks are produced using squeeze casting apparatus or pressure die-casting apparatus. But the solidification process gets complicated with manufacturing parameters and the factors for porosity formation have not fully understood yet. In this study the formation of porosity during squeeze infiltration has been studied experimentally to achieve an improved understanding of the squeeze infiltration process for manufacture of short-fiber-reinforced components, particularly the mechanism of porosity formation. Al-based MMCs produced under a range of conditions were examined metallographically and the porosity characterised;a kind of matrix, an initial temperature of melt, and a volume fraction of reinforcement. The densimetry and the microscopic image analysis were done to measure the amount of porosity. A correlation between manufacturing parameters and defects was investigated through these.

  • PDF

Behavioral Characteristics of Improved Ground by Fully Penetrated and Partially Penetrated SCP according to Construction Stage (관통SCP와 미관통SCP로 개량된 지반의 시공단계별 거동 특성)

  • Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.51-57
    • /
    • 2012
  • In this study, numerical analysis was carried out for both partially penetrated SCP(sand compaction pile) and fully penetrated SCP constructed into the ground. Midas GTS was used as a FEM analysis program, which is widely used in geotechnical engineering. For the analysis, ground displacement, effective stress and pore water pressure at the time both just after embankment on the ground and 365days later were compared and analyzed. As the results, the effect regarding partially penetrated SCP was similar to the effect regarding fully penetrated SCP under the bottom of the center of embankment when considering the safety towards shear failure.

Microwave sintering of Fly Ash substituted body (석탄회가 첨가된 점토의 마이크로파를 이용한 소결)

  • 김석범;한정환;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.513-517
    • /
    • 1998
  • Fly ashes mixed with clay as 70:30 weight percent were sintered by microwave energy and a 2.45 Ghz kitchen model microwave oven was used. Samples were sintered at $1,150^{\circ}C$ and kept at that temperature up to 50 minutes by 10 minutes intervals. Microstructures were taken by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometry (EDS) analysis of a raw fly ash was taken. X-ray diffraction analysis was done, and compressive strengths and apparent densities were measured. Pore sizes of the samples became smaller as time passed by, but compressive strengths and apparent densities did not change much. Numerical analysis on the microwave heated system was carried out in order to figure out heat transfer phenomena in the cavity.

  • PDF

Numerical Analysis of Piezocone Test using Modified Cam-Clay Model (Modified Cam-Clay Model을 이용한 피에조콘 시험의 수치해석)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.89-99
    • /
    • 2001
  • In this study, the numerical analysis of piezocone penetration and dissipation tests has been conducted using the Modified Cam-Clay model, which is generally used in soil mechanics. The Modified Cam-Clay model and related mathematical equations in finite element derivation have been formulated in the Updated Lagrangian reference frame to take the large displacement and finite strain nature of piezocone penetration into consideration. The cone tip resistance, the pore water pressure, and the dissipation curve obtained from the finite element analysis have been compared and investigated with the experimental results from piezocone penetration test performed in Yangsan site. The numerical results showed good agreement with the experimental results; however, the better numerical simulation of the continuous and deep penetration needs further research.

  • PDF