• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.028 seconds

3D stability of shallow cavity roof with arbitrary profile under influence of pore water pressure

  • Luo, W.J.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.569-575
    • /
    • 2018
  • The stability of shallow cavities with an arbitrary profile is a difficult issue in geotechnical engineering. This paper investigates this problem on the basis of the upper bound theorem of limit analysis and the Hoek-Brown failure criterion. The influence of pore pressure is taken into consideration by regarding it as an external force acting on rock skeleton. An objective function is constructed by equating the internal energy dissipation to the external force work. Then the Lagrange variation approach is used to solve this function. The validity of the proposed method is demonstrated by comparing the analytical solutions with the published research. The relations between shallow and deep cavity are revealed as well. The detaching curve of cavity roof with elliptical profile is obtained. In order to facilitate the application of engineering practice, the numerical results are tabulated, which play an important role in tunnel design and stability analysis of roof. The influential factors on potential collapse are taken into consideration. From the results, the impact of various factors on the extent of detaching is seen intuitively.

A Study on the Evaluation of the Water-soluble Chloride Content and Free-chloride Content in Blast Furnace Slag Cement Pastes (고로 슬래그 시멘트 페이스트 내 자유염화물량과 물가용성 염화물량 평가에 관한 연구)

  • Jo, Young-Kug;So, Seung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.95-101
    • /
    • 2004
  • The purpose of this paper is to compare free-chloride content with water-soluble chloride in blast furnace cement(BSC) paste. The content of free-chloride in cement paste measured by pore solution analysis and water-soluble chloride measured by ASTM. The result of this study are as follows: 1. The concentration of chloride ion in pore solution of BSC-solidified matrix is almost as low as 43-71% compared to that of OPC-solidified matrix containing the same chloride content in cement paste. 2. The binding capacity of specimens, OPC Pl-P5, are 93.5-77%, but the binding capacity of specimens, BSC Pl-P5 are 97.1-86.1%, which is to be as high as 2-9.1% compared to OPC containing the same chloride content. 3. In terms of water-soluble chloride content in BSC paste are 15-31.7 percent of chloride addition but free-chloride content in pore solution are 2.9-13.9 percent of chloride addition. The free-chloride content in pore solution is 19.3-43.8 percent lower for the water-soluble chloride content in cement paste.

Preparation of Micro-spherical Activated Carbon with Meso-porous Structure for the Electrode Materials of Electric Double Layer Capacitor (전기이중층 캐패시터 전극용 meso-pore구조의 미소구형 활성탄소 제조)

  • Um, Eui-Heum;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.396-401
    • /
    • 2009
  • A micro-spherical activated carbon with meso-pore structure of 52~64% and particle diameter of $2{\sim}10{\mu}m$ was prepared for the improvement electrochemical performance of activated carbon as electrode material for electric double layer capacitor. Resorcinol-formaldehyde resin was used as a carbon source in this preparation. According to electrochemical analysis of EDLC using this activated a carbon with showing effects to reduce charge transfer resistance and to increase rate capability, it was found out that micro-spherical activated carbon could be a good method as well as a material for enhancing the performance of electric double layer capacitor.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Effect of oxyfluorination on activated electrospun carbon nanofibers for $CO_2$ storage (함산소불소화 효과에 의한 전기방사 활성탄소나노섬유의 $CO_2$ 저장)

  • Bai, Byong Chol;Kim, Jong Gu;Im, Ji Sun;Lee, Young-Seak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.219.2-219.2
    • /
    • 2011
  • The oxyfluorination effects of electrospun carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Carbon nanofibers were prepared form poly acrylonitrile / N,N-dimethylformamide solution through electrospinning method and heat treatment. Chemical activation of carbon nanofibers were carried out in order to improve the pore structure. And the surface modification of activated carbon nanofibers was conducted by oxyfluorination to improve the $CO_2$ storage on effect of introduced functional groups. The samples were labeled CF (electrospun carbon nanofiber), ACF (activated carbon nanofibers), OFACF-1 ($F_2:O_2$ = 3:7), OFACF-2 ($F_2:O_2$ = 5:5) and OFACF-3 ($F_2:O_2$ = 7:3). The functional group of OFACFs was investigated by x-ray photoelectron spectroscopy analysis. The specific surface area, pore volume and pore size of OFACFs were calculated and pore shape was estimated by the BET equation. Through the adsorption isotherm, the specific surface area and pore volume significantly decreased by oxyfluorination.

  • PDF

An Experimental Study on the Variation of Pore Water Pressures in the Seabed Subjected to Waves (파랑하중에 의한 해저지반의 공극수압 변화에 대한 연구)

  • 장병욱;강준영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.85-94
    • /
    • 1996
  • For the geotechnical analysis in the construction and Deign of the coastal structures, one of the most important factors is the existence of waves. The dynamic behavior and deformation of the seabed subjected to wave load must be considered. It is expected that the soil behavior in the seabed subjected to cyclic wave load is much different from that on the ground subjected to dynamic forces such as earthquake. The purposes of this study are as follows ; Firstly, to provide a testing method to generate wave loads in the laboratory and measuring oscillatory pore water pressures in the unsaturated marine silty sand specimen, Secondly, to analyze the mechanism of wave induced pore water pressures and liquefaction potentials under the conditions in the testing. It is shown that the test set-up manufactured especially for the test is good to generate oscillatory wave pressures to the specimen with sine wave type. From the results of this study, it is understood that the pore water pressure due to induced waves is not accumulated as the wave number increases but is periodically varied with wave passage on still water surface. The magnitude of pore water pressures measured tends to be diminished radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

Effect of pore number of titanium mesh on Bone Formation in the procedure of GBR (골유도재생술시 그물형 티타늄막의 천공수가 골형성에 미치는 영향)

  • Lee, Keun-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.411-424
    • /
    • 2004
  • This study was performed to evaluate bone formation in the calvaria of rabbit by the concept of guided bone regeneration with titanium mesh membrane. Two different titanium meshes with varying number (353, 565) of pore were utilized in the study. Two surgical sites(T353, T565) were evaluated about whether or not the number of pore may have effect on the bone formation. The animal was sacrificed at 10days, 3 weeks, 6weeks, and 8 weeks after the surgery. Non-decalcified specimens were processed for histologic analysis. 1. Titanium mesh was biocompatible and capable of maintaining the spacemaking. 2. At 3 weeks, 6 weeks, and 8 weeks after GBR procedure, bone formation was more in the T353 site than in the T565 site. 3. Soft tissue layer above the regenerated bone was better developed in the T565 site. 4. There was no difference between two membranes in bone maturity with time. Within the above results, titanium mesh with lesser pore in number might be recommended for the early bone formation.

Isolated Pore Generation Mechanism and Mechanical Properties in MAS System with 3Y-TZP (MAS계에서 3Y-TZP 첨가에 따른 독립 기공 생성기구와 기계적 성질)

  • 최성철;박현철
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.881-890
    • /
    • 1993
  • MAS system has narrow sintering temp. range due to the liquid phae sintering and thereby densify rapidly. And especially, its poor mechanical properties limitedthe industrial application. In this study, the improvement of mechanical properties and densification is suggested by the consideration of the toughening mechanisms and isolated pore generation mechanism which is derived by the liquid phase sintering theory in 3Y-TZP added composites. After Pressureless sintering up to 140$0^{\circ}C$ for 5hr, the dihedral angle and contact angle are analyzed by the observation of microstructure. As a result of microstructure analysis, the sintering stage of the specimen sintered for 5hr is analyzed as solid-skeleton stage. And the isolated pore generation mechanisms are considered as (1) The swelling of the liquid phase is predominent due to the facts that dihedral angle is larger than 60$^{\circ}$, contact angle is large and that liquid volume fraction is smaller than 10%. (2) The porous characteristics of the MAS system is also suggested as: the SiO2-rich liquid film is firstly formed at the srface and therefore this reduces the contiguity of the pore, which induces the isolated pore. The strength and fracture toughness increased with the addition of 3Y-TZP and the main fracture toughness improvement mechanisms are analyzed as the crack deflection.

  • PDF

An Experimental Study on the Characteristics of Microporous Structure Formation by Curing Condition of Cement and Blast Furnace Slag Composite (시멘트 및 고로슬래그 경화체의 양생환경에 따른 미세 공극구조 형성 특성에 관한 실험적 연구)

  • Park, Cheol;Jung, Yeon-Sik;Seo, Chee-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.63-70
    • /
    • 2017
  • When industrial by-products like slag and fly ash are using in concrete with cement, it improves strength and durability against external deterioration factors by densifying the structure through potential hydraulic and pozzolanic reaction. But it has been pointed out that high dependence on the quality variation and the curing condition using a admixure material for concrete. In this study, the characteristics of internal micropore structure according to curing condition were analyzed for pastes and mortar specimens under using blast furnace slag powder. As a result, the variation of compressive strength and the internal microstructure were observed according to curing conditions by binder type. Particularly, using blast furnace slag powder, decrease in compressive strength were clearly observed in indoor and carbonation curing compared with water curing. The pore structure analysis also clearly observed the decrease of the gel pore existing in the CSH hydrate layer and the increase of the capillary pore in indoor and carbonation curing compared with water curing condition.

Experimental and computational insights into the adsorption of a hydrazone-based heterocyclic compound on steel rebar in synthetic concrete pore solution (합성 콘크리트 공극 솔루션에서 철근에 히드라존 기반 헤테로고리 화합물의 흡착에 대한 실험 및 계산 통찰력)

  • Lgaz, Hassane;Karthick, Subbiah;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.73-74
    • /
    • 2022
  • The corrosion inhibitive effect of a new hydrazone-based heterocyclic compound for steel in simulated concrete pore solution with 3.5 wt.% sodium chloride was investigated by experimental and computational techniques. Electrochemical studies, up to 30 days of immersion, and surface analysis (X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscope (SEM)) were performed to assess the corrosion protection abilities of investigated compound for steel rebar. Results showed that adding the organic compound to the chloride contaminated concrete pore solution decreased the corrosion rate of the steel rebar thanks to the effective adsorption of inhibitor molecules. After 30 days of immersion of steel rebar in inhibited chloride contaminated synthetic concrete pore solution, the inhibition efficiency exceeded 80% at low concentration of 1 mmol/L. Computational studies by Density Functional based Tight Binding (DFTB) method revealed the formation of covalent bonds between the hydrazone molecule and the iron surface.

  • PDF