Preparation of Micro-spherical Activated Carbon with Meso-porous Structure for the Electrode Materials of Electric Double Layer Capacitor

전기이중층 캐패시터 전극용 meso-pore구조의 미소구형 활성탄소 제조

  • Um, Eui-Heum (Department of Chemical Engineering, Dankook University) ;
  • Lee, Chul-Tae (Department of Chemical Engineering, Dankook University)
  • 엄의흠 (단국대학교 공학부 화학공학전공) ;
  • 이철태 (단국대학교 공학부 화학공학전공)
  • Received : 2009.03.30
  • Accepted : 2009.05.20
  • Published : 2009.08.10

Abstract

A micro-spherical activated carbon with meso-pore structure of 52~64% and particle diameter of $2{\sim}10{\mu}m$ was prepared for the improvement electrochemical performance of activated carbon as electrode material for electric double layer capacitor. Resorcinol-formaldehyde resin was used as a carbon source in this preparation. According to electrochemical analysis of EDLC using this activated a carbon with showing effects to reduce charge transfer resistance and to increase rate capability, it was found out that micro-spherical activated carbon could be a good method as well as a material for enhancing the performance of electric double layer capacitor.

전기이중층 캐패시터의 성능향상을 위한 전극물질로서 resorcinol-formaldehyde수지를 탄소원으로 사용하여 meso-pore 비율 52~64%의 기공특성을 지니며 직경 $2{\sim}10{\mu}m$의 미세구형 활성탄을 제조하였다. 이 활성탄을 전기이중층에 적용한 결과, meso-pore구조의 미세구형활성탄은 전하전달저항의 저감 및 충방전율 수용능력 향상에 효과적인 영향을 나타내어 전기이중층 캐패시터의 성능향상을 위한 효과적인 전극물질이 될 수 있음을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. C. T. Lee, J. H. Kim, and B. W. Cho, Prospectives of Industrial Chemistry, 2, 16 (1999)
  2. T. Osaka and M. Datta, Energy Storage Systems for Electronics, 521, Gordon and Breach Science Publishers, New York (2000)
  3. M. Hahn, R. Kotz, R. Gallay, and A. Siggel, Electrochimica Acta, 52, 1709 (2006) https://doi.org/10.1016/j.electacta.2006.01.080
  4. N. Nanbu, T. Ebina, H. Uno, S. Ishizawa, and Y. Sasaki, Electrochimica Acta, 52, 1763 (2006) https://doi.org/10.1016/j.electacta.2006.03.105
  5. T. Osaka, X. Liu, and M. Nojima, Journal of Power Sources, 74, 122 (1998) https://doi.org/10.1016/S0378-7753(98)00043-3
  6. H.-B. Gu, J.-U. Kim, H.-W. Song, G.-C. Park, and B.-K. Park, Electrochimica Acta, 45, 1533 (2000) https://doi.org/10.1016/S0013-4686(99)00370-9
  7. B. Zhang, J. Liang, C. L. Xu, B. Q. Wei, D. B. Ruan, and D. H. Wu, Materials Letters, 51, 539 (2001) https://doi.org/10.1016/S0167-577X(01)00352-4
  8. B.-J. Yoon, S.-H. Jeong, K.-H. Lee, H. S. Kim, C. G. Park, and J. H. Han, Chemical Physics Letters, 388, 170 (2004) https://doi.org/10.1016/j.cplett.2004.02.071
  9. S.-W. Hwang and S.-H. Hyun, Journal of Non-Crystalline Solids, 347, 238 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.07.075
  10. S. R. S. Prabaharan, R. Vimala, and Z. Zainal, Journal of Power Sources, 161, 730 (2006) https://doi.org/10.1016/j.jpowsour.2006.03.074
  11. S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, Current Applied Physics, 6, 1012 (2006) https://doi.org/10.1016/j.cap.2005.07.008
  12. S. Mitani, S.-I. Lee, K. Saito, Y. Korai, and I. Mochida, Electrochimica Acta, 51, 5487 (2006) https://doi.org/10.1016/j.electacta.2006.02.040
  13. G. Liu, F. Kang, B. Li, Z. Huang, and X. Chuan, Journal of Physics and Chemistry of Solids, 67, 1186 (2006) https://doi.org/10.1016/j.jpcs.2006.01.044
  14. B. Fang, Y. Z. Wei, and M. Kumagai, Journal of Power Sources, 155, 487 (2006) https://doi.org/10.1016/j.jpowsour.2005.04.012
  15. K. Leitner, A. Lerf, M. Winter, J. O. Besenhard, S. Villar-Rodil, F. Suarez-Garcia, A. Martinez-Alonso, and J. M. D. Tascon, Journal of Power Sources, 153, 419 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.078
  16. G. Gryglewicz, J. Machnilkowski, E. L. -Grabowska, G. Lota, and E. Frackowiak, Electrochimica Acta, 50, 1197 (2004) https://doi.org/10.1016/j.electacta.2004.07.045
  17. C. Merino, P. Soto, E. Vilaplana-Ortego, J. M. Gomez de Salazar, F. Pico, and J. M. Rojo, Carbon, 43, 551 (2005) https://doi.org/10.1016/j.carbon.2004.10.018
  18. E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, and F. Beguin, Carbon, 44, 2498 (2006) https://doi.org/10.1016/j.carbon.2006.05.022
  19. C. Lin and J. A. Ritter, Carbon, 35, 1271 (1997) https://doi.org/10.1016/S0008-6223(97)00069-9
  20. H. Tamon, H. Ishizaka, T. Araki, and M. Okazaki, Carbon, 36, 1257 (1998) https://doi.org/10.1016/S0008-6223(97)00202-9
  21. T. Hasegawa, S. R. Mukai, Y. Shirato, and H. Tamon, Carbon, 42, 2573 (2004) https://doi.org/10.1016/j.carbon.2004.05.050
  22. S.-J. Park and W.-Y. Jung, Journal of Colloid and Interface Science, 250, 196 (2002) https://doi.org/10.1006/jcis.2002.8337
  23. H. Teng and S.-C. Wang, Carbon, 38, 817 (2000) https://doi.org/10.1016/S0008-6223(99)00160-8
  24. J. Hayashi, A. Kazehaya, K. Muroyama, and A. P. Watkinson, Carbon, 38, 1873 (2000) https://doi.org/10.1016/S0008-6223(00)00027-0
  25. J. K. Sun, M.S. Dissertation, Dankook University, Seoul, Korea (2001)