• Title/Summary/Keyword: polyvinyl alcohol fiber

Search Result 98, Processing Time 0.032 seconds

Spatting Resistance of High Strength RC Column Covering Spray-on Materials of Fiber Composite Spray Mortar(FCSM) (섬유복합모르터의 뿜칠마감에 의한 고강도콘크리트 기둥부재의 폭렬방지)

  • Song Yong-Won;Han Dong-Yeob;Lee Gun-Cheol;Goh Kyoung-Taek;Kim Jin-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.5-8
    • /
    • 2006
  • High strength concrete has been increasingly used in high rue building and it is very obvious re consider fire resistance performance of that. Unlike the normal strength concrete, high strength concrete in sudden elevating temperature at fire is susceptible to spalling with severe explosion and surface split, due to high density of concrete. In order to endure the spalling, inner space temperature of concrete should be control less than certain point. Therefore this study investigated the influence of covering materials on high strength concrete finishing spray-on materials of fiber composite spray mortar(FCSM). Both polypropylene(PP) and polyvinyl alcohol(PVA) fiber were used in this test. Test showed that concrete, covering 18mm mortar containing PVA fiber and confining metal lath 2.3mm thickness, decreased 50% of main bar ambient temperature. compared with control concrete. In addition, concrete covering 18mm mortar without fiber caused falling of covering materials and then it was exposed in elevating temperature. As a result, spatting of the concrete occurred same as control concrete. However, concrete covering spray-on mortar containing PVA or PP fiber resisted spatting occurrence.

  • PDF

An Experimental Study for Basic Properties of Mortar Applied PC Panels by PVA and Nylon Fiber Ratio (PVA 및 나일론 섬유 혼입률에 따른 PC 패널용 모르타르의 기초 물성에 관한 실험적 연구)

  • Lee, Jae-Hyun;Song, Young-Chan;Kim, Yong-Ro;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.137-140
    • /
    • 2009
  • Nowadays, the high performance composite materials are famous for the new construction materials as the construction buildings are bigger and higher. Out of them of all, the fiber reinforced concrete and mortar have been studied to develop and strengthen the performances of concrete, such as tensile strength, durability and the resistibility of crack. Also, it is considered that precast concrete is important alternatives of dry process for saving time, upgrading the material's quality and the productivity. Thus, PC panel is being produced for the use of dry wall as well as exterior finishing materials and it requires lots of tests and studies to be conducted to meet the various functional conditions. According to this study, it is considered that PVA fiber might be more effective than nylon fiber for developing the exterior PC panels.

  • PDF

Physical·Mechanical and Temperature Properties of Fiber Reinforced Porous Green Roof Hwang-toh Concrete (섬유보강 다공성 옥상녹화 황토콘크리트의 물리·역학적 및 온도변화 특성 평가)

  • Oh, Ri On;Kim, Chun Soo;Kim, Hwang Hee;Jeon, Ji Hong;Kwon, Wan Sig;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.65-72
    • /
    • 2013
  • The physical, mechanical, water purification and temperature properties of fiber reinforced porous hwang-toh green roof concrete have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio is varied to 0 % and 30 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH test, unit weight, void ratio, compressive strength, after purification and variation of temperature test have been performed to evaluate the performance, water purification effect and temperature properties of the fiber reinforced porous hwang-toh green roof concrete. The test results indicate that the physical and mechanical properties of fiber reinforced porous hwang-toh green roof concrete is affected by the replacement ratio of the blast furnace slag and hwang-toh contents. Results of purifying water showed that the water purification effect of porous hwang-toh green roof concrete is about 40 %. Also, the temperature properties test results indicate the green roof blocks using fiber reinforced porous hwang-toh green roof concrete have insulation and temperature reduction effect.

Engineering Characteristics of Bio-cemented Soil Mixed with PVA Fiber (PVA섬유를 혼합한 미생물 고결토의 공학적 특성)

  • Choi, Sun-Gyu;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.27-33
    • /
    • 2016
  • In this study, Polyvinyl alcohol (PVA) fiber was used to increase strength (unconfined compressive strength and tensile strength) of bio-cemented sand using microorganism. Ottawa sand was mixed with PVA fibers having three fiber contents (0, 0.4, and 0.8%). The fiber mixed sand was treated 14 times by using Microbially Induced Calcite Precipitation (MICP) which included culture (2 times per day) during 7 days to improve its engineering properties. The Bacillus Sporosarcina pasteurrii (Bacillus sp.) was used for urease activity. The specimen was prepared as a cylindrical specimen of 5 cm in diameter and 10 cm in height. Unconfined compressive strength and tensile strength were measured after cementation. Moreover, calcium carbonate content and SEM analyses were performed with a piece of sample. An average value of unconfined compressive strength increased and then slightly decreased but an average value of tensile strength ratio increased with increasing carbonate content the in same condition. Unconfined compressive strength and tensile strength increased about 30% and 160%, respectively. A strength ratio of unconfined compressive strength to tensile strength representing the brittleness decreased from 8 to 4 when fiber content increased from 0.0 to 0.8%. Such bio-cemented sand can be applied into slope area to prevent its shear failure or increase its tensile strength.

Impact Fracture Behavior under Temperature Variation and Compressive·Flexural Strength of Cement Composites using VAE Powder Polymer and PVA Fiber (PVA 섬유와 VAE 분말 폴리머를 사용한 시멘트복합체의 압축·휨강도 및 온도변화에 따른 충격파괴거동)

  • Heo, Gwang-Hee;Park, Gong-Gun;Kim, Chung-Gil;Lee, Hyung-Joon;Choi, Won-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.102-112
    • /
    • 2019
  • This paper studies impact fracture behavior under temperature variation and compressive flexural strength of cement composites using VAE(vinyl acetate ethylene) powder polymer and PVA(polyvinyl alcohol) fiber. Impact test were conducted in the temperature range selected for the $-35^{\circ}C$, $0^{\circ}C$ and $35^{\circ}C$. In this experimental study, impact test were carried out using a drop impact testing machine (Ceast 9350) to obtain such as displacement, time, and impact fracture energy of normal specimen and and cement composites specimen. As test results, the use of VAE powder polymer and PVA fiber were observed to enhance the flexural strength of mortar. The compressive strength of PVA fibers reinforced cement composites was slightly decreased at 28 days, but the flexural strength was observed to increase 24.4% of normal mortar strength. As a result of the drop impact tests, PVA fiber reinforced cement composites specimens showed microcracks due to energy dispersion and crack prevention with bridge effect of the fibers, and scabbing or perforation by impact was suppressed. On the other hand, the normal mortar and VAE powder polymer cement composites specimens were carried out to the perforation and macro crack. Most of normal mortar and the cement composites subjected to impact load on specimens shows mostly local brittle failure. The impact resistant performance of the specimen with PVA fiber was greatly improved due to the increase of flexure performance.

Relations between rheological and mechanical properties of fiber reinforced mortar

  • Cao, Mingli;Li, Li;Xu, Ling
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • Fresh and hardened behaviors of a new hybrid fiber (steel fiber, polyvinyl alcohol fiber and calcium carbonate whisker) reinforced cementitious composites (HyFRCC) with admixtures (fly ash, silica fume and water reducer) have been studied. Within the limitations of the equipment and testing program, it is illustrated that the rheological properties of the new HyFRCC conform to the modified Bingham model. The relations between flow spread and yield stress as well as flow rate and plastic viscosity both conform well with negative exponent correlation, justifying that slump flow and flow rate test can be applied to replace the other two as simple rheology measurement and control method in jobsite. In addition, for the new HyFRCC with fly ash and water reducer, the mathematical model between the rheological and mechanical properties conform well with the quadratic function, and these quadratic function curves are always concave upward. Based on mathematical analysis, an optimal range of rheology/ flowability can be identified to achieve ideal mechanical properties. In addition, this optimization method can be extended to PVA fiber reinforced cement-based composites.

The Drawability of Iodinated at Solution Before Casting Polyvinyl Alcohol Films and Structure and Properties of Maximum-Drawn Films After Deiodination (성형 전 용액상태에서 요드화된 폴리비닐알코올 섬유의 연신 및 요드제거)

  • 신은주;이양헌;박찬헌;최석철
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.348-349
    • /
    • 2003
  • PVA는 열가소성 고분자임에도 불구하고 융점(230~25$0^{\circ}C$)에 이어 바로 측쇄의 분해(270 $^{\circ}C$)가 시작되므로 공정상 많은 어려움을 가지고 있다. 그러나 요드와 같은 극성의 가소제를 사용하면 결정영역 까지도 가소화 시킬 수 있는 이점이 있어 PVA 유연성, 가공성 둥의 성질을 개선시킬 수 있다. [1-3] 특히 본 연구에서 성형 전 요드화된 폴리비닐알코올 필름을 제작하여 구조를 살펴본 결과, 결정성이 많이 감소하다가 요드흡착량이 150%의 경우에서는 무정형상태까지 나타났다. (중략)

  • PDF

The Spalling Characteristics of High Strength Concrete with Fiber Content (섬유 혼입량에 따른 고강도 콘크리트 폭렬 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.387-390
    • /
    • 2005
  • Recently, in order to reduce the spalling of high strength concrete under fire, the addition of organic fibres to high strength concrete has been investigated. In this study, the effect of organic fibre content on the spalling of high strength concrete was experimantally investigated. Two types of fibre, polypropylene(PP) and polyvinyl alcohol(PVA) fibres, were selected, and three water/binder ratios were selected, which were W/B $30\%,\;24.\%,\;and\;16\%$, respectively. As a result, it appears that as the concrete strength increases, the fiber content for prevention spalling increases. When W/B ratios are $30\%,\;24.9\%$, the additions of $0.1vol.\%$ and $0.2vol.\%$, respectively, appear to avoid the spalling in this study.

  • PDF

Changes of Characteristics of Low Temperature Plasma treated PVA Polarized Film (저온 플라즈마를 이용한 PVA 편광필름의 특성 변화)

  • Seo, Seung-Kyung;Jeun, Sang-Min;Koo, Kang
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.245-246
    • /
    • 2003
  • 최근 정보통신 산업의 급속한 성장으로 평판 표시소자의 개발에 많은 관심이 모아지고 있다. 특히 이 중에서 액정 표시소자(LCD)의 수요는 급증하고 있으며 그에 관련된 부품 및 소재의 중요성 또한 강조되고 있다. LCD 부품 및 소재에서 가장 중요한 역할을 하는 편광필름은 일반적으로 PVA (polyvinyl alcohol) 또는 polyene 구조를 갖는 고분자 필름에 요오드를 염착시켜 사용되어 왔다. 본 연구에서는 PVA Film에 저온 플라즈마 처리를 함으로서 편광도와 투과도에 어떠한 영향을 미치는지에 대해 알아보고자 한다. (중략)

  • PDF

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.