Various interpolation methods have been compared for reconstruction of LMR pin power distributions in hexagonal geometry. Interpolation functions are derived for several combinations of nodal quantities and various sets of basis functions, and tested against fine mesh calculations. The test results indicate that the interpolation functions based on the sixth degree polynomial are quite accurate, yielding maximum interpolation errors in power densities less than 0.5%, and maximum reconstruction errors less than 2% for driver assemblies and less than 4% for blanket assemblies. The main contribution to the total reconstruction error is made tv the nodal solution errors and the comer point flux errors. For the polynomial interpolations, the basis monomial set needs to be selected such that the highest powers of x and y are as close as possible. It is also found that polynomials higher than the seventh degree are not adequate because of the oscillatory behavior.
In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.
In this paper, we propose an alternate method for determining the uniqueness of the reconstruction of a complex sequence from its phase. Uniqueness constraints could be derived in terms of the zeros of a complex polynomial defined by the DFT of the sequence. However, rooting of complex polynomials of high order is a very difficult problem. Instead of finding zeros of a complex polynomial, the proposed uniqueness criteria show that non-singularity of a matrix can guarantee the uniqueness of the reconstruction of a complex sequence from its phase-only data. It has clear advantage over the rooting method in numerical stability and computational time.
바이오정보를 이용한 사용자 인증시스템은 편리함과 동시에 강력한 보안을 제공할 수 있다. 그러나 사용자 인증을 위해 저장된 중요한 바이오정보가 타인에게 도용된다면 심각한 문제를 일으킨다. 따라서 타인에게 유출되더라도 재사용이 불가능하도록 하기 위하여 사용자의 바이오정보에 역변환이 불가능한 함수를 적용하여 저장하고 변환된 상태에서 인증과정을 수행할 수 있는 방법이 필요하다. 본 논문에서는 최근 지문 템플릿 보호를 위해 활발히 연구되고 있는 지문 퍼지볼트의 빠른 다항식 복원 방법을 제안한다. 제안된 방법은 (k-1)차 다항식을 복원하기 위해 (k+1)개의 real point를 필요로 하며, 전수조사에 비해서 수행속도가 다항식의 차수에 따라 약 $300{\sim}1500$배 향상되는 효과를 가져왔다.
자연환경에 노출된 센서기반의 제어장치는 센서오류가 발생하게 된다. 본 논문에서는 센서의 오류 보정기능을 갖는 고정밀 태양추적장치를 개발하였다. 다항식회귀분석 (Polynomial Regression)과 주성분 분석(Principal Component Analysis)을 응용하였으며 태양추적장치의 센서를 모델링하고 자체 진단하고 복구하는 방법을 연구하였다. 시스템의 정상동작시의 센서간의 상호관계를 이용한 모델링과 센서 표본값의 주분포 모델인 PCA 모델이 이루어지면 이를 기준으로 센서의 여러 가지 오류를 점검하고 오류센서 신호를 재건을 한다.
The problem of reconstruction of complete building response from a limited number of response measurements is considered. The response at the intermediate degrees of freedom is reconstructed by using piecewise cubic Hermite polynomial interpolation in time domain. The piecewise cubic Hermite polynomial interpolation is preferred over the spline interpolation due to its trend preserving character. It has been shown that factorization of response data in variable separable form via singular value decomposition can be used to derive the complete set of normal modes of the structural system. The time domain principal components can be used to derive empirical transfer functions from which the natural frequencies of the structural system can be identified by peak-picking technique. A reduced-rank approximation for the system flexibility matrix can be readily constructed from the identified mass-orthonormal mode shapes and natural frequencies.
We present a method for improving the accuracy of the modal wavefront reconstruction in the radial shearing interferometers (RSIs). Our approach involves expanding the reduced radial terms of Zernike polynomials to high-order, which enables more precise reconstruction of the wavefront aberrations with high-spatial frequency. We expanded the reduced polynomials up to infinite order with symbolic variables of the radius, shearing amount, and transformation matrix elements. For the simulation of the modal wavefront reconstruction, we generated a target wavefront subsequently, magnified and measured wavefronts were generated. To validate the effectiveness of the high-order Zernike polynomials, we applied both low- and high-order polynomials to the wavefront reconstruction process. Consequently, the peak-to-valley (PV) and RMS errors notably decreased with values of 0.011λ and 0.001λ, respectively, as the order of the radial Zernike polynomial increased.
이 논문에서는 저전력의 DWT(Discrete Wavelet Transform) 필터 뱅크를 설계하는 방식을 제안하였다. 분석단의 기본 저역통과 필터로서 comb 필터를 사용하였으며 comb 필터의 주파수 응답특성을 보완하기 위하여 4차 다항식의 필터를 직렬로 연결한 방식을 제안하였다. 분석단의 고역통과 필터와 합성단의 필터들은 완전복원(perfect reconstruction) 조건을 이용하여 설계하였으며, 이와 같이 설계된 필터들의 최적 필터계수를 얻기 위하여 비용함수를 사용하여 완전복원 조건을 만족하도록 최적화하였다. 제안된 필터 뱅크 설계 결과는 JPEG2000의 (9, 7) 필터 뱅크와 비교하여 실제 이미지를 사용하여 MSE를 비교해본 결과 더 우수한 값을 얻을 수 있었으며, 곱셈의 사용수도 33.3%가 적었다. 따라서 이미지 신호를 압축하는데 널리 사용될 수 있는 저전력 구조임을 입증하였다.
잡음이 존재하는 채널을 통하여 디지털 통신을 하는 경우 일반적으로 채널 부호를 사용한다. 만약 수신측에서 채널 부호의 생성 파라미터를 모르는 경우, 채널 부호의 복호는 매우 어렵다. 이러한 경우에 수신데이터의 정확한 복호를 위해서는 채널부호의 종류 및 생성 파라미터를 알아내는 방법이 필요하다. 본 논문에서는 BCH(Bose-Chaudhuri-Hocquenghem) 부호의 생성 파라미터인 생성다항식을 추정하는 기법을 소개한다. 이 방법은 생성다항식이 최소다항식으로 구성된다는 특징과 순회부호의 특성을 이용한 방법이다. 그리고 종래 방법에 비해 생성다항식 추정 성능을 향상 시킬 수 있는 결정 확률 변수 보상 기법을 제안한다. 제안한 기법은 랜덤데이터 패턴이 생성다항식을 구성하는 최소다항식으로 나누어지는 특성을 이용한 기법이다. 또한 컴퓨터 시뮬레이션을 통해 제안한 알고리즘의 우수성을 검증한다.
본 논문에서는 퍼지 k-NN과 reconstruction error에 기반을 둔 feature selection을 이용한 lazy 분류기 설계를 제안하였다. Reconstruction error는 locally linear reconstruction의 평가 지수이다. 새로운 입력이 주어지면, 퍼지 k-NN은 local 분류기가 유효한 로컬 영역을 정의하고, 로컬 영역 안에 포함된 데이터 패턴에 하중 값을 할당한다. 로컬 영역과 하중 값을 정의한 우에, feature space의 차원을 감소시키기 위하여 feature selection이 수행된다. Reconstruction error 관점에서 우수한 성능을 가진 여러 개의 feature들이 선택 되어 지면, 다항식의 일종인 분류기가 하중 최소자승법에 의해 결정된다. 실험 결과는 기존의 분류기인 standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees와 비교 결과를 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.