• 제목/요약/키워드: polynomial optimization

Search Result 354, Processing Time 0.031 seconds

Maximum Profit Priority Goods First Loading Algorithm for Barge Loading Problem (바지선 적재 문제의 최대이득 물품 우선 적재 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.169-173
    • /
    • 2014
  • Nobody has yet been able to determine the optimal solution conclusively whether NP-complete problems are in fact solvable in polynomial time. Gu$\acute{e}$ret et al. tries to obtain the optimal solution using linear programming with $O(m^4)$ time complexity for barge loading problem a kind of bin packing problem that is classified as nondeterministic polynomial time (NP)-complete problem. On the other hand, this paper suggests the loading rule of profit priority rank algorithm with O(m log m) time complexity. This paper decides the profit priority rank firstly. Then, we obtain the initial loading result using the rule of loading the good has profit priority order. Finally, we balance the loading and capability of barge swap the goods of unloading in previously loading in case of under loading. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m log m) time complexity for NP-complete barge loading problem.

Minimum Margin Tank Loading Algorithm for Chemical Tank Loading Problem (화공약품 탱크 적재 문제의 최소 여유량 탱크 적재 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • The chemical tank loading problem has been classified as nondeterministic polynomial time (NP)-complete problem because of the polynomial-time algorithm to find the solution has been unknown yet. Gu$\acute{e}$ret et al. tries to obtain the optimal solution using linear programming package with $O(m^4)$ time complexity for chemical tank loading problem a kind of bin packing problem. On the other hand, this paper suggests the rule of loading chemical into minimum margin tank algorithm with O(m) time complexity. The proposed algorithm stores the chemical in the tank that has partial residual of the same kind chemical firstly. Then, we load the remaining chemical to the minimum marginal tanks. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m) time complexity for NP-complete chemical tank loading problem.

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Short-Distance Gate Subtree Algorithm for Capacitated Minimum Spanning Tree Problem (능력한정 최소신장트리 문제의 근거리 게이트 서브트리 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.33-41
    • /
    • 2021
  • This paper proposes heuristic greedy algorithm that can be find the solution within polynomial time with solution finding rule for the capacitated minimum spanning tree(CMST) problem, known as NP-hard. The CMST problem can be solved by computer-aided meta-heuristic because of the Esau-Williams heuristic polynomial time algorithm has a poor performance. Nevertheless the meta-heuristic methods has a limit performance that can't find optimal solution. This paper suggests visual by handed solution-finding rule for CMST. The proposed algorithm firstly construct MST, and initial feasible solution of CMST from MST, then optimizes the CMST with the subtree gates more adjacent to root node. As a result of total 30 cases of OR-LIB 10 data, Q=3,5,10, the proposed algorithm gets the best performance.

Prediction of the IGS RTS Correction using Polynomial Model at IOD Changes (IOD 변화 시점에서 다항식 모델을 사용한 IGS RTS 보정정보 예측)

  • Kim, Mingyu;Kim, Jinho;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.533-539
    • /
    • 2020
  • Real-time service (RTS) provided by IGS provides correction for GNSS orbit and clock via internet, so it is widely used in fields that require real-time precise positioning. However, the RTS signal may be lost due to an unstable Internet environment. When signal disconnection occurs, signal prediction can be performed using polynomial models. However, the RTS changes rapidly after the GNSS navigation message issue of data (IOD) changes, so it is difficult to predict when signal loss occurs at that point. In this study, we proposed an algorithm to generate continuous RTS correction information by applying the difference in navigation trajectory according to IOD change. The use of this algorithm can improve the accuracy of RTS prediction at IOD changes. After performing optimization studies to improve RTS prediction performance, the predicted RTS trajectory information was applied to precision positioning (PPP). Compared to the conventional method, the position error is significantly reduced, and the error increase along with the signal loss interval increase is reduced.

Study on Hull Form Variation of Fore Body Based on Multiple Parametric Modification Curves (다중 파라메트릭 변환곡선 기반 선수 선형 변환기법 연구)

  • Park, Sung-Woo;Kim, Seung-Hyeon;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.96-108
    • /
    • 2022
  • In this paper, we propose a systematic hull form variation technique which automatically satisfies the displacement constraint and guarantees a high level of fairness. This method is possible through multiple parameter correction curves. The present method is to improve the hull form variation method based on parametric modification function and consists of two sub-categories: SAC variation and section lines modification. For SAC variation, the utilization of two B-Spline curves satisfying GC1 condition led to the satisfaction of displacement constraint and high level of fairness at the same time. Section lines modification methods involves in using two fuctions: the first is the waterplane modification function combining two cubic splines. the other function is the sectional area modification function consisting of 2nd order polynomial over the DLWL(Design Load Waterline) and 3rd order polynomial below the DLWL, This function enables not only the fundamental U-V section shape variation but also systematically modified section lines. The present method is expected to be more useful in the hull form optimization process using CFD compared to the existing method.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Optimization of LC-MS/MS for the Analysis of Sulfamethoxazole by using Response Surface Analysis (반응표면분석법을 이용한 설파메톡사졸의 액체크로마토그래프-텐덤형 질량분석 최적화)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.825-830
    • /
    • 2009
  • Pharmaceutical compounds enter the water environment through the diverse pathways. Because their concentration in the water environment was frequently detected in the level of ppt to ppb, the monitoring system should be optimized as much as possible for finding appropriate management policies and technical solutions. One Factor At a Time (OFAT) approach approximating the response with a single variable has been preferred for the optimization of LC-MS/MS operational conditions. However, it is common that variables in analytical instruments are interdependent. Therefore, the best condition could be found by using the statistical optimization method changing multiple variables at a time. In this research, response surface analysis (RSA) was applied to the LC-MS/MS analysis of emerging antibiotic compound, sulfamethoxazole, for the best sensitivity. In the screening test, fragmentation energy and collision voltage were selected as independent variables. They were changed simultaneously for the statistical optimization and a polynomial equation was fit to the data set. The correlation coefficient, $R^2$ valuerepresented 0.9947 and the error between the predicted and observed value showed only 3.41% at the random condition, fragmentation energy of 60 and collision voltage of 17 eV. Therefore, it was concluded that the model derived by RSA successfully predict the response. The optimal conditions identified by the model were fragmentation energy of 116.6 and collision voltage of 10.9 eV. This RSA can be extensively utilized for optimizing conditions of solid-phase extraction and liquid chromatography.

Central Composite Design Matrix (CCDM) for Phthalocyanine Reactive Dyeing of Nylon Fiber: Process Analysis and Optimization

  • Ravikumar, K.;Kim, Byung-Soon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.19-28
    • /
    • 2008
  • The objective of this study was to apply the statistical technique known as design of experiments to optimize the % exhaustion variables for phthalocyanine dyeing of nylon fiber. In this study, a three-factor Central Composite Rotatable Design (CCRD) was used to establish the optimum conditions for the phthalocyanine reactive dyeing of nylon fiber. Temperature, pH and liquor ratio were considered as the variable of interest. Acidic solution with higher temperature and lower liquor ratio were found to be suitable conditions for higher % exhaustion. These three variables were used as independent variables, whose effects on % exhaustion were evaluated. Significant polynomial regression models describing the changes on % exhaustion and % fixation with respect to independent variables were established with coefficient of determination, R2, greater than 0.90. Close agreement between experimental and predicted yields was obtained. Optimum conditions were obtained using surface plots and Monte Carlo simulation techniques where maximum dyeing efficiency is achieved. The significant level of both the main effects and interaction was observed by analysis of variance (ANOVA) approach. Based on the statistical analysis, the results have provided much valuable information on the relationship between response variables and independent variables. This study demonstrates that the CCRD could be efficiently applied for the empirical modeling of % exhaustion and % fixation in dyeing. It also shows that it is an economical way of obtaining the maximum amount of information in a short period of time with least number of experiments.

Development of Cationic Dyeable Polyamide Substrates by Pretreatment with Synthetic Tanning Agent: Statistical Optimization and Analysis

  • Son, Young-A;Ravikumar, K.;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Design of experiments (DoE) concept was successfully applied to determine the optimum processing conditions that yield maximum % exhaustion for berberine interaction with synthetic tanning agent pretreated polyamide substrates. The potential of synthetic tanning agent to provide anionic sites on the polyamide for berberine interaction which is cationic in nature was tested to increase the % exhaustion of berberine in this article. Experiments were designed according to Central Composite Rotatable Design (CCRD). The three factors for synthetic tanning agent pretreatment and two factors for berberine interaction each at five different levels, including central and axial points were considered. Experiments were conducted in a laboratory scale infra-red treatment instrument according to CCRD. For each response, second order polynomial models were developed using multiple linear regression analysis incorporating linear, interactions and squared effects of all variables and then optimized. The significance of the mathematical model developed was ascertained using Excel regression (solver) analysis module. Analysis of variance (ANOVA) was performed to check the adequacy and accuracy of the fitted models. The response surfaces and contour maps showing the interaction of process variables were constructed. Applying Monte Carlo simulation, response surface and contour plots, optimum operating conditions were found and at this optimum point, % exhaustion of 81% and 74% respectively for synthetic tanning agent pretreatment and berberine interaction were observed and subsequently the results were experimentally investigated.