Abstract
The chemical tank loading problem has been classified as nondeterministic polynomial time (NP)-complete problem because of the polynomial-time algorithm to find the solution has been unknown yet. Gu$\acute{e}$ret et al. tries to obtain the optimal solution using linear programming package with $O(m^4)$ time complexity for chemical tank loading problem a kind of bin packing problem. On the other hand, this paper suggests the rule of loading chemical into minimum margin tank algorithm with O(m) time complexity. The proposed algorithm stores the chemical in the tank that has partial residual of the same kind chemical firstly. Then, we load the remaining chemical to the minimum marginal tanks. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m) time complexity for NP-complete chemical tank loading problem.
화공약품 탱크 적재 문제는 다항시간으로 해를 찾을 수 있는 알고리즘이 알려져 있지 않아 NP-완전으로 분류된 난제이다. 화공약품 탱크 적재 문제는 상자 포장 문제의 일종으로, Gu$\acute{e}$ret et al.은 $O(m^4)$ 수행 복잡도의 선형계획법으로 해를 얻고자 하였다. 반면에, 본 논문에서는 최소 여유량을 가진 탱크에 적재하는 규칙인 O(m) 복잡도의 알고리즘을 제안하였다. 제안된 방법은 첫 번째로 잔여량이 있는 탱크에 해당 화공약품을 적재하였다. 다음으로, 남은 화공약품을 적재할 수 있는 최소 여유량을 가진 탱크에 해당 화공약품을 적재하였다. 실험 결과, 제안된 알고리즘은 NP-완전 문제인 화공약품 적재 문제에 대해 선형계획법의 $O(m^4)$를 O(m)으로 단축시켰다.