DOI QR코드

DOI QR Code

Identification of prognosis-specific network and prediction for estrogen receptor-negative breast cancer using microarray data and PPI data

마이크로어레이 데이터와 PPI 데이터를 이용한 에스트로겐 수용체 음성 유방암 환자의 예후 특이 네트워크 식별 및 예후 예측

  • Hwang, Youhyeon (Dept. of Computer Engineering, Gachon University) ;
  • Oh, Min (Dept. of Computer Engineering, Gachon University) ;
  • Yoon, Youngmi (Dept. of Computer Engineering, Gachon University)
  • 황유현 (가천대학교 컴퓨터공학과) ;
  • 오민 (가천대학교 컴퓨터공학과) ;
  • 윤영미 (가천대학교 컴퓨터공학과)
  • Received : 2014.11.12
  • Accepted : 2015.01.29
  • Published : 2015.02.28

Abstract

This study proposes an algorithm for predicting breast cancer prognosis based on genetic network. We identify prognosis-specific network using gene expression data and PPI(protein-protein interaction) data. To acquire the network, we calculate Pearson's correlation coefficient(PCC) between genes in all PPI pairs using gene expression data. We develop a prediction model for breast cancer patients with estrogen-receptor-negative using the network as a classifier. We compare classification performance of our algorithm with existing algorithms on independent data and shows our algorithm is improved. In addition, we make an functionality analysis on the genes in the prognosis-specific network using GO(Gene Ontology) enrichment validation.

본 논문에서는 유전자 네트워크를 기반으로 유방암 환자의 예후를 예측하는 알고리듬을 제안한다. 유방암 환자의 마이크로어레이 데이터와 PPI(Protein-protein interaction)데이터를 이용하여 알고리듬의 분류자로 사용될 예후 특이 네트워크(Prognosis specific gene network)를 추출한다. PPI에 속한 모든 유전자 네트워크에 대하여 각각의 네트워크가 예후 좋음과 나쁨을 잘 구분하는지에 대한 점수를 피어슨 상관계수(Pearson's correlation coefficient)와 마이크로어레이 데이터를 이용하여 계산한다. 이들 중 가장 예후에 유의한 네트워크를 식별하고, 이 네트워크를 분류자로 사용하여 에스트로겐 수용체 음성 유방암 환자의 예후를 분류 분석 한다. 본 연구와 기존 연구의 알고리듬 정확도를 비교 분석 하기 위하여 독립 실험을 진행하고, 본 연구에서 제안된 알고리듬의 성능이 더 우수함을 보인다. 또한, Gene Ontology 데이터베이스를 활용하여 식별된 예후 특이 네트워크를 기능적으로 검증 한다.

Keywords

References

  1. GARCIA, Maxime, et al. "Interactome- transcriptome integration for predicting distant metastasis in breast cancer." Bioinformatics, 28.5: 672-678, Jan. 2012. https://doi.org/10.1093/bioinformatics/bts025
  2. Ministry of Health and Welfare. "Annual report of the Central Cancer Registry in Korea, Seoul." Ministry of Health and Welfare, 2001
  3. VAN DE VIJVER, Marc J., et al. "A gene-expression signature as a predictor of survival in breast cancer." New England Journal of Medicine, 347.25: 1999-2009, Dec. 2002. https://doi.org/10.1056/NEJMoa021967
  4. WANG, Yixin, et al. "Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer." The Lancet, 365.9460: 671-679, Feb. 2005. https://doi.org/10.1016/S0140-6736(05)70933-8
  5. CHUANG, Han-Yu, et al. "Network-based classification of breast cancer metastasis." Molecular systems biology, 3.1, Jan. 2007.
  6. TAYLOR, Ian W., et al. "Dynamic modularity in protein interaction networks predicts breast cancer outcome." Nature biotechnology, 27.2: 199-204, Feb. 2009. https://doi.org/10.1038/nbt.1522
  7. Taylor CR, et al. "Detection of estrogen receptor in breast and endometrial carcinoma by the immunoperoxidase technique." Cancer 47:2634-2640, June 1981. https://doi.org/10.1002/1097-0142(19810601)47:11<2634::AID-CNCR2820471119>3.0.CO;2-H
  8. Scottish Cancer Trials Breast Group and ICRF Breast Unit GHL: "Adjuvant ovarian ablation versus CMF chemotherapy in premenopausal women with pathological stage II breast carcinoma: the Scottish trial." Lancet 341: 1293-1298, May 1993
  9. REIS-FILHO, Jorge S.; PUSZTAI, Lajos. "Gene expression profiling in breast cancer: classification, prognostication, and prediction." The Lancet, 378.9805: 1812-1823, Nov. 2011. https://doi.org/10.1016/S0140-6736(11)61539-0
  10. FISHER, Bernard, et al. "Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06." Journal of Clinical Oncology, 6.7: 1076-1087, July 1988. https://doi.org/10.1200/JCO.1988.6.7.1076
  11. MCGUIRE, William L., et al. "How to use prognostic factors in axillary node-negative breast cancer patients." Journal of the National Cancer Institute, 82.12: 1006-1015, June 1990. https://doi.org/10.1093/jnci/82.12.1006
  12. BEZWODA, Werner Robert, et al. "The value of estrogen and progesterone receptor determinations in advanced breast cancer. Estrogen receptor level but not progesterone receptor level correlates with response to tamoxifen." Cancer, 68.4: 867-872, Aug. 1991. https://doi.org/10.1002/1097-0142(19910815)68:4<867::AID-CNCR2820680432>3.0.CO;2-H
  13. ABE, O., et al. "Tamoxifen for early breast cancer: an overview of the randomised trials." Lancet, 351.9114: 1451-1467, May 1998. https://doi.org/10.1016/S0140-6736(97)11423-4
  14. MACKAY, Joel P., et al. "Protein interactions: is seeing believing?" Trends in biochemical sciences, 32.12: 530-531, Nov. 2007. https://doi.org/10.1016/j.tibs.2007.09.006
  15. CHATR-ARYAMONTRI, Andrew, et al. "Protein interactions: integration leads to belief." Trends in biochemical sciences, 33.6: 241-242, May 2008. https://doi.org/10.1016/j.tibs.2008.04.002
  16. DE LAS RIVAS, Javier; FONTANILLO, Celia. "Protein-protein interactions essentials: key concepts to building and analyzing interactome networks." PLoS computational biology, 6.6: e1000807, June 2010. https://doi.org/10.1371/journal.pcbi.1000807
  17. Biomolecular Interaction Network Database, http://bond.unleashedinformatics.com/
  18. Biological General Repository for Interaction Datasets, http://www.thebiogrid.org/
  19. Human Protein Reference Database, http://www.hprd.org/
  20. IntAct Molecular Interaction Database, http://www.ebi.ac.uk/intact/
  21. Molecular INTeraction database, http://mint.bio.uniroma2.it/mint/
  22. Database of Interacting Proteins, http://dip.doe-mbi.ucla.edu/dip/
  23. MIPS protein interaction resource on yeast, http://mips.gsf.de/genre/proj/mpact/
  24. Online Predicted Human Interaction Database, http://ophid.utoronto.ca/
  25. Guo Yu, "Statistical issues in microarray data analysis: Array-to-array normalization, Empirical Bayes batch effect adjustment."
  26. ASHBURNER, Michael, et al. "Gene Ontology: tool for the unification of biology." Nature genetics, 25.1: 25-29, Oct. 2000. https://doi.org/10.1038/75556
  27. GENE ONTOLOGY CONSORTIUM, et al. "The gene ontology project in 2008." Nucleic acids research, 36.suppl 1: D440-D444, Nov. 2007. https://doi.org/10.1093/nar/gkm883
  28. DENNIS JR, Glynn, et al. "DAVID: database for annotation, visualization, and integrated discovery." Genome biol, 4.5: P3, Aug. 2003. https://doi.org/10.1186/gb-2003-4-5-p3
  29. Gene Ontology, http://www.geneontology.org
  30. AHN, Jaegyoon, et al. "Integrative gene network construction for predicting a set of complementary prostate cancer genes." Bioinformatics, 27.13: 1846-1853, May 2011. https://doi.org/10.1093/bioinformatics/btr283
  31. LOI, Sherene, et al. "Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade." Journal of clinical oncology, 25.10: 1239-1246, April 2007. https://doi.org/10.1200/JCO.2006.07.1522
  32. SCHMIDT, Marcus, et al. "The humoral immune system has a key prognostic impact in node-negative breast cancer." Cancer research, 68.13: 5405-5413, July 2008. https://doi.org/10.1158/0008-5472.CAN-07-5206
  33. DESMEDT, Christine, et al. "Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series." Clinical cancer research, 13.11: 3207-3214, June 2007. https://doi.org/10.1158/1078-0432.CCR-06-2765
  34. NAGALLA, Srikanth, et al. "Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis." Genome Biol, 14.4: R34, April 2013. https://doi.org/10.1186/gb-2013-14-4-r34