• Title/Summary/Keyword: polynomial functions

Search Result 455, Processing Time 0.026 seconds

COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS

  • Adegani, Ebrahim Analouei;Bulut, Serap;Zireh, Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.405-413
    • /
    • 2018
  • In this work, we use the Faber polynomial expansions to find upper bounds for the coefficients of analytic bi-univalent functions in subclass $\Sigma({\tau},{\gamma},{\varphi})$ which is defined by subordination conditions in the open unit disk ${\mathbb{U}}$. In certain cases, our estimates improve some of those existing coefficient bounds.

CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE CHEBYSHEV POLYNOMIALS

  • BULUT, Serap;MAGESH, Nanjundan;BALAJI, Vittalrao Kupparao
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • In this paper, we obtain initial coefficient bounds for an unified subclass of analytic functions by using the Chebyshev polynomials. Furthermore, we find the Fekete-$Szeg{\ddot{o}}$ result for this class. All results are sharp. Consequences of the results are also discussed.

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF

UNIQUE RANGE SETS WITHOUT FUJIMOTO'S HYPOTHESIS

  • Chakraborty, Bikash
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1247-1253
    • /
    • 2022
  • This paper studies the uniqueness of two non-constant meromorphic functions when they share a finite set. Moreover, we will give an existence of unique range sets for meromorphic functions that are the zero sets of some polynomials that do not necessarily satisfy the Fujimoto's hypothesis ([6]).

DISTRIBUTION OF VALUES OF DIFFERENCE OPERATORS CONCERNING WEAKLY WEIGHTED SHARING

  • SHAW, ABHIJIT
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.545-562
    • /
    • 2022
  • Using the conception of weakly weighted sharing we discussed the value distribution of the differential product functions constructed with a polynomial and difference operator of entire function. Here we established two uniqueness result on product of difference operators when two such functions share a small function.

TRIPLE AND FIFTH PRODUCT OF DIVISOR FUNCTIONS AND TREE MODEL

  • KIM, DAEYEOUL;CHEONG, CHEOLJO;PARK, HWASIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.145-156
    • /
    • 2016
  • It is known that certain convolution sums can be expressed as a combination of divisor functions and Bernoulli formula. In this article, we consider relationship between fifth-order combinatoric convolution sums of divisor functions and Bernoulli polynomials. As applications of these identities, we give a concrete interpretation in terms of the procedural modeling method.

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

SOME IDENTITIES ASSOCIATED WITH 2-VARIABLE TRUNCATED EXPONENTIAL BASED SHEFFER POLYNOMIAL SEQUENCES

  • Choi, Junesang;Jabee, Saima;Shadab, Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.533-546
    • /
    • 2020
  • Since Sheffer introduced the so-called Sheffer polynomials in 1939, the polynomials have been extensively investigated, applied and classified. In this paper, by using matrix algebra, specifically, some properties of Pascal and Wronskian matrices, we aim to present certain interesting identities involving the 2-variable truncated exponential based Sheffer polynomial sequences. Also, we use the main results to give some interesting identities involving so-called 2-variable truncated exponential based Miller-Lee type polynomials. Further, we remark that a number of different identities involving the above polynomial sequences can be derived by applying the method here to other combined generating functions.

Optimal Model Design of Software Process Using Genetically Fuzzy Polynomial Neyral Network (진화론적 퍼지 다항식 뉴럴 네트워크를 이용한 소프트웨어 공정의 최적 모델 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2873-2875
    • /
    • 2005
  • The optimal structure of the conventional Fuzzy Polynomial Neural Networks (FPNN)[3] depends on experience of designer. For the conventional Fuzzy Polynomial Neural Networks, input variable number, number of input variable, number of Membership Functions(MFs) and consequence structures are selected through the experience of a model designer iteratively. In this paper, we propose the new design methodology to find the optimal structure of Fuzzy Polymomial Neural Network by using Genetic Algorithms(GAs)[4, 5]. In the sequel, It is shown that the proposed Advanced Genetic Algorithms based Fuzzy Polynomial Neural Network(Advanced GAs-based FPNN) is more useful and effective than the existing models for nonlinear process. We used Medical Imaging System(MIS)[6] data to evaluate the performance of the proposed model.

  • PDF