References
- H. Airault, Symmetric sums associated to the factorization of Grunsky coeffcients, in Groups and symmetries, CRM Proc. Lecture Notes Amer. Math. Soc. Providence, RI, 47 (2007), 3-16.
- H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), no. 3, 179-222. https://doi.org/10.1016/j.bulsci.2005.10.002
- H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), no. 5, 343-367. https://doi.org/10.1016/S0007-4497(02)01115-6
- R. M. Ali, S. K. Lee, V. Ravichandran, and S. Subramaniam, Coeffcient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351. https://doi.org/10.1016/j.aml.2011.09.012
- E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (2013), no. 1, 49-60.
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
- G. Faber, Uber polynomische Entwickelungen, Math. Ann. 57 (1903), no. 3, 389-408. https://doi.org/10.1007/BF01444293
- B. A. Frasin, Coeffcient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat. 43 (2014), no. 3, 383-389.
- J. M. Jahangiri and S. G. Hamidi, Coeffcient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. 2013, Art. ID 190560, 4 pp.
- M. Lewin, On a coeffcient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
- Z. Nehari, Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
- H. M. Srivastava and D. Bansal, Coeffcient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), no. 2, 242-246. https://doi.org/10.1016/j.joems.2014.04.002
- H. M. Srivastava, S. S. Eker, and R. M. Ali, Coeffcient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), no. 8, 1839-1845. https://doi.org/10.2298/FIL1508839S
- H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
- P. G. Todorov, On the Faber polynomials of the univalent functions of class , J. Math. Anal. Appl. 162 (1991), no. 1, 268-276. https://doi.org/10.1016/0022-247X(91)90193-4
- D.-G. Yang and J.-L. Liu, A class of analytic functions with missing coeffcients, Abstr. Appl. Anal. 2011, Art. ID 456729, 16 pp.
- P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169-178.