• 제목/요약/키워드: polynomial approximation

검색결과 217건 처리시간 0.024초

CIRCLE APPROXIMATION USING PARAMETRIC POLYNOMIAL CURVES OF HIGH DEGREE IN EXPLICIT FORM

  • Ahn, Young Joon
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1259-1267
    • /
    • 2022
  • In this paper we present a full circle approximation method using parametric polynomial curves with algebraic coefficients which are curvature continuous at both endpoints. Our method yields the n-th degree parametric polynomial curves which have a total number of 2n contacts with the full circle at both endpoints and the midpoint. The parametric polynomial approximants have algebraic coefficients involving rational numbers and radicals for degree higher than four. We obtain the exact Hausdorff distances between the circle and the approximation curves.

효율적 고차 신경회로망을 이용한 비선형 함수 근사에 대한 연구 (Nonlinear Function Approximation Using Efficient Higher-order Feedforward Neural Networks)

  • 신요안
    • 한국통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.251-268
    • /
    • 1996
  • In this paper, a higher-order feedforward neural network called ridge polynomial network (RPN) which shows good approximation capability for nonlnear continuous functions defined on compact subsets in multi-dimensional Euclidean spaces, is presented. This network provides more efficient and regular structure as compared to ordinary higher-order feedforward networks based on Gabor-Kolmogrov polynomial expansions, while maintating their fast learning property. the ridge polynomial network is a generalization of the pi-sigma network (PSN) and uses a specialform of ridge polynomials. It is shown that any multivariate polynomial can be exactly represented in this form, and thus realized by a RPN. The approximation capability of the RPNs for arbitrary continuous functions is shown by this representation theorem and the classical weierstrass polynomial approximation theorem. The RPN provides a natural mechanism for incremental function approximation based on learning algorithm of the PSN. Simulation results on several applications such as multivariate function approximation and pattern classification assert nonlinear approximation capability of the RPN.

  • PDF

CURVED DOMAIN APPROXIMATION IN DIRICHLET'S PROBLEM

  • Lee, Mi-Young;Choo, Sang-Mok;Chung, Sang-Kwon
    • 대한수학회지
    • /
    • 제40권6호
    • /
    • pp.1075-1083
    • /
    • 2003
  • The purpose of this paper is to investigate the piecewise wise polynomial approximation for the curved boundary. We analyze the error of an approximated solution due to this approximation and then compare the approximation errors for the cases of polygonal and piecewise polynomial approximations for the curved boundary. Based on the results of analysis, p-version numerical methods for solving Dirichlet's problems are applied to any smooth curved domain.

The Use of Generalized Gamma-Polynomial Approximation for Hazard Functions

  • Ha, Hyung-Tae
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1345-1353
    • /
    • 2009
  • We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on moment-matching technique to approximate survival and hazard functions in the context of parametric survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and distribution functions of convolutions and finite mixtures of random variables, from which the approximated survival and hazard functions are obtained. This technique provides very accurate approximation to the target functions, in addition to their being computationally efficient and easy to implement. In addition, the generalized gamma-polynomial approximations are very stable in middle range of the target distributions, whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

Polynomially Adjusted Normal Approximation to the Null Distribution of Ansari-Bradley Statistic

  • Ha, Hyung-Tae;Yang, Wan-Youn
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1161-1168
    • /
    • 2011
  • The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.

Numerical Comparisons for the Null Distribution of the Bagai Statistic

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.267-276
    • /
    • 2012
  • Bagai et al. (1989) proposed a distribution-free test for stochastic ordering in the competing risk model, and recently Murakami (2009) utilized a standard saddlepoint approximation to provide tail probabilities for the Bagai statistic under finite sample sizes. In the present paper, we consider the Gaussian-polynomial approximation proposed in Ha and Provost (2007) and compare it to the saddlepoint approximation in terms of approximating the percentiles of the Bagai statistic. We make numerical comparisons of these approximations for moderate sample sizes as was done in Murakami (2009). From the numerical results, it was observed that the Gaussianpolynomial approximation provides comparable or greater accuracy in the tail probabilities than the saddlepoint approximation. Unlike saddlepoint approximation, the Gaussian-polynomial approximation provides a simple explicit representation of the approximated density function. We also discuss the details of computations.

APPROXIMATION OF HELIX BY G2 CUBIC POLYNOMIAL CURVES

  • YOUNG JOON AHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제28권2호
    • /
    • pp.59-70
    • /
    • 2024
  • In this paper we present the approximation method of the circular helix by G2 cubic polynomial curves. The approximants are G1 Hermite interpolation of the circular helix and their approximation order is four. We obtain numerical examples to illustrate the geometric continuity and the approximation order of the approximants. The method presented in this paper can be extended to approximating the elliptical helix. Using the property of affine transformation invariance we show that the approximant has G2 continuity and the approximation order four. The numerical examples are also presented to illustrate our assertions.

직교 다항식 근사법과 고차 통계를 이용한 전력 외란의 자동식별 (Automatic classification of power quality disturbances using orthogonal polynomial approximation and higher-order spectra)

  • 이재상;이철호;남상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1436-1439
    • /
    • 1997
  • The objective of this paper is to present an efficient and practical approach to the automatic classification of power quality(PQ) disturbances, where and orthogonal polynomial approximation method is emloyed for the detection and localization of PQ disturbances, and a feature vector, newly extracted form the bispectra of the detected signal, is utilized for the automatic rectgnition of the various types of PQ disturbances. To demonstrae the performance and applicabiliyt of the proposed approach, some simulation results are provided.

  • PDF

다항식 근사를 이용한 이족보행 로봇의 보행패턴 생성 (Walking Pattern Generation for a Biped Robot Using Polynomial Approximation)

  • 강윤석;박정훈;임홍재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.567-572
    • /
    • 2004
  • In this research, a stable walking pattern generation method for a biped robot is presented. A biped robot is considered as constrained multibody system by several kinematic joints. The proposed method is based on the optimized polynomial approximation of the trunk motion along the moving direction. Foot motions can be designed according to the ground condition and walking speed. To minimize the deviation from the desired ZMP, the trunk motion is generated by the fifth order polynomial approximation. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

  • PDF