• Title/Summary/Keyword: polymeric porous materials

Search Result 29, Processing Time 0.023 seconds

Filtration Characteristics of Polymeric Porous Materials Composed of Polypropylene and Polyethylene (Polypropylene과 Polyethylene으로 구성된 기공성 고분자 소재의 여과특성)

  • Ahn, Byeng-Gil;Oh, Kyeong-Keun;Choi, Ung-Soo;Kwon, Oh-Kwan
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.32-40
    • /
    • 1998
  • The polymeric porous materials which consist of polypropylene(PP) and polyethylene(PE) powder were prepared to apply to the air purification systems by extrusion sintering method. SEM analysis showed that a composite polymeric porous structure made up of PP and PE was obtained, where PE was melted and adhered to PP because the melting temperature of PE was lower than that of PP. The filtration characteristics and mechanical properties of polymeric porous materials were investigated by varying the head die temperature of the extruder, extrusion velocity, and the melt index and quantity of PE. The filtration efficiency was proportional to the quantity of PE but inversely proportional to the melt index of PE. The polymeric porous materials composed of PP and PE, which was made by extrusion sintering method, was found to be suitable for the filter element of the air purification system.

  • PDF

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory

  • Navi, B. Rousta;Mohammadimehr, M.;Arani, A. Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.753-767
    • /
    • 2019
  • Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Fabrication of Nano-sized Titanate Powder via a Polymeric Steric Entrapment Route and Planetary Milling Process

  • Lee, Sang-Jin;Lee, Chung-Hyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.336-340
    • /
    • 2002
  • Pure and nano-sized $TiO_2$ and $CaTiO_3$ powders were fabricated by a polymeric steric entrapment route and planetary milling process. An ethylene glycol was used as a polymeric carrier for the preparation of organic-inorganic precursors. Titanium isopropoxide and calcium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. At the optimum amount of the polymer, the metal cations were dispersed in solution and a homogeneous polymeric network was formed. The dried precursor ceramic gels were turned to porous powders through calcination process. The porous powders were crystallized at low temperatures and the crystalline powders were planetary milled to nano size.

Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia (가소결된 그레뉼이 다공질 지르코니아 세라믹스의 특성에 미치는 영향)

  • Lee, Eun-Jung;Ha, Jang-Hoon;Kim, Yang-Do;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.566-574
    • /
    • 2012
  • Porous zirconia ceramics are widely considered to be important due to their unique properties and potential applications. In this paper, we propose a novel approach to produce porous zirconia ceramics. The linear shrinkage of the prepared porous zirconia ceramics could be controlled to 4% by incorporating pre-sintered zirconia granules and hollow polymeric spheres. We also investigated the effect of pre-sintered zirconia granules on the microstructure and the properties, such as the porosity, pore distribution, and bending strength of the porous zirconia ceramics.

Porous Ceramic Fibers: Materials and Applications

  • Kim, Il-Du
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.4-4
    • /
    • 2011
  • Extensive research efforts are directed toward the development of highly sensitive gas sensors using novel nanostructured materials. Among the different strategies for producing sensor devices based on nanosized building blocks, polymeric fiber templating approach which is combined by chemical and physical synthesis routes was attracted much attention. This unique morphology increases the surface area and reduces the interfacial area between film and substrate. Consequently, the surface activity is markedly enhanced while deleterious interfacial effects between film and substrate are significantly reduced. Both effects are highly advantageous for gas sensing applications. In this presentation, facile synthesis of hollow and porous metal oxide nanostructures and their applications in chemical sensors will be discussed.

  • PDF

Fabrication of Polymeric Hollow Spheres Having Macropores by a Quenching and Sublimation Process

  • Im, Sang-Hyuk;Park, O-Ok;Kwon, Moo-Hyun
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.518-522
    • /
    • 2003
  • We fabricated polymeric hollow spheres having macropores, which combine the advantageous properties of porous materials and hollow spheres. To fabricate such spheres, a polystyrene/methylmethacrylate solution was dispersed in water by vigorously stirring and then the suspension was quenched using liquid nitrogen. Water and methyl methacrylate present in the quenched suspension were readily sublimated by freeze-drying. Conclusively, the hollow-sphere structure and the macropores of its shell were created by the processes of liquid nitrogen-quenching and sublimation of methyl methacrylate domains within the shell, respectively.

Recent Progress in Study and Development of Polymeric Scaffolds for Tissue Regeneration (조직재생을 위한 고분자 지지체의 최근 연구개발 동향)

  • Joung, Yoon-Ki;Park, Ki-Dong;Park, Kwi-Deok;Han, Dong-Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.255-266
    • /
    • 2008
  • In tissue engineering, scaffolds play an important role in the growth of cells to 3-D organs or tissues. For the success of tissue engineering, they should be mimicked to meet the requirements of natural extracellular matrix (ECM) in the body, such as mechanical properties, adhesiveness, porosity, biodegradability, and growth factor release, etc. Contrary to other materials, polymeric materials are adequate to engineer scaffolds for tissue engineering because controlling the structure and the ratio of components and designing various shapes and size are possible. In this review, the importance, major characteristics, processes, and recent examples of polymeric scaffolds for tissue engineering applications are discussed.

Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads (일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화)

  • Lee, Eun Sun;Goh, Tae Sik;Lee, Chi-Seung
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.