Fabrication of Polymeric Hollow Spheres Having Macropores by a Quenching and Sublimation Process

  • Im, Sang-Hyuk (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, O-Ok (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kwon, Moo-Hyun (Department of Chemical Engineering, Woosuk University)
  • Published : 2003.12.01

Abstract

We fabricated polymeric hollow spheres having macropores, which combine the advantageous properties of porous materials and hollow spheres. To fabricate such spheres, a polystyrene/methylmethacrylate solution was dispersed in water by vigorously stirring and then the suspension was quenched using liquid nitrogen. Water and methyl methacrylate present in the quenched suspension were readily sublimated by freeze-drying. Conclusively, the hollow-sphere structure and the macropores of its shell were created by the processes of liquid nitrogen-quenching and sublimation of methyl methacrylate domains within the shell, respectively.

Keywords

References

  1. Adv. Mater. v.10 M.Antonietti;B.Berton;C.Goltner;H.P.Hentze https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<154::AID-ADMA154>3.0.CO;2-I
  2. Nature v.398 Y.Lu;H.Fan;A.Stump;T.L.Ward;T.Rieker;C.J.Brinker https://doi.org/10.1038/18410
  3. Adv. Mater. v.10 S.D.Sims;D.Walsh;S.Mann https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<151::AID-ADMA151>3.0.CO;2-U
  4. Science v.276 D.A.Edwards;J.Hanes;G.Caponetti;J.Hrkach;A.BenJebria;M.L.Eskew;J.Mintzes;D.Deaver;N.Lotan;R.Langer https://doi.org/10.1126/science.276.5320.1868
  5. Macromol. Res. v.10 B.T.Kim;K.Song;S.S.Kim https://doi.org/10.1007/BF03218302
  6. Macromol. Res. v.11 S.C.Kim;B.Y.Lim https://doi.org/10.1007/BF03218347
  7. Macromol. Res. v.11 J.S.Choi;B.C.Chun;S.J.Lee https://doi.org/10.1007/BF03218338
  8. Macromol. Res. v.10 J.H.Kim;J.E.Yoo;C.K.Kim https://doi.org/10.1007/BF03218307
  9. Nature v.408 Y.Sakamoto;M.Kaneda;O.Terasaki;D.Y.Zhao;J.M.Kim;G.Stucky;H.J.Shin;R.Ryoo https://doi.org/10.1038/35044040
  10. Ind. Eng. Chem. Res. v.32 K.Sujatha;K.S.Kamalesh https://doi.org/10.1021/ie00016a014
  11. Mat. Res. Soc. Symp. Proc. v.431 K.R.Carter;J.L.Hedrick;R.Richter;P.T.Furuta;D.Mecerreyes;R.Jerome
  12. Mat. Res. Soc. Symp. Proc. v.431 J.L.Headrick;S.Srinivasan;R.D.Miller;D.Y.Shih;Y.H.Liao;J.G.Hilorn;C.J.G.Plummer;A.D.Martina
  13. Adv. Mater. v.14 E.Muthusamy;D.Walsh;S.Mann https://doi.org/10.1002/1521-4095(20020705)14:13/14<969::AID-ADMA969>3.0.CO;2-1
  14. Nano Lett. v.2 F.Iskandar;Mikrajuddin;K.Okuyama https://doi.org/10.1021/nl015662g
  15. Chem. Mater. v.14 D.Wang;F.Caruso https://doi.org/10.1021/cm0211251
  16. Nano Lett. v.2 M.S.Wong;J.N.Cha;K.S.Choi;T.J.Deming;G.D.Stucky https://doi.org/10.1021/nl020244c
  17. Colloid Polym. Sci. v.277 J.W.Kim;Y.G.Joe;K.D.Suh https://doi.org/10.1007/PL00013751
  18. Mater. Res. Soc. Symp. Proc. v.372 D.L.Wilcox;M.Berg
  19. Polymer Physics U.W.Gedde
  20. Science v.281 R.T.Bartus(et al.) https://doi.org/10.1126/science.281.5380.1161
  21. Biomaterials v.21 R.A.Jain https://doi.org/10.1016/S0142-9612(00)00115-0