• Title/Summary/Keyword: polymer resist

Search Result 84, Processing Time 0.03 seconds

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

Numerical Simulation of NIL Process Based on Continuum Hypothesis (연속체 가정을 통한 NIL 공정의 전산모사)

  • Kim, Seung-Mo;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.532-537
    • /
    • 2007
  • Nano imprint lithography(NIL) is a cost-efficient, high-throughput processing technique to transfer nano-scale patterns onto thin polymer films. Polymers used as the resist include UV cured resins as well as thermoplastics such as polymethyl-methacrylate(PMMA). In this study, an analytic investigation was performed for the NIL process of transferring nano scale patterns onto polymeric films. Process optimization calls for a thorough understanding of resist flow during the process. We carried out 2D and 3D numerical analyses of resist flow during NIL process. The simulation incorporated continuum-hypothesis and the effects of surface tension were taken into account. For a more effective prediction of free surface, fixed grid scheme with the volume of fluid (VOF) method were used. The simulation results were verified with experimental results qualitatively. And the parametric study was performed for various process conditions.

  • PDF

Photobleaching Nonchemically Amplified Photoresists

  • Kim, Jin-Baek;Ganesan, Ramakrishnan;Kim, Kyoung-Seon;Choi, Jae-Hak
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.176-176
    • /
    • 2006
  • We designed and synthesized new type of nonchemically amplified polymeric and molecular resists and studied their lithographic performance. The polymeric resists [poly(DOBEMA-co-GBLMA)] show very high degree of photobleaching at 248 nm and moderate to good degree of photobleaching at 193 nm. The molecular resist (CDEOPE-POSS) shows high degree of photobleaching at 248 nm and modetate degree of photobleaching at 193 nm. CDEOPE-POSS possesses very high oxygen reactive ion etching resistance, which makes it suitable to be used as a bilayer resist. The lithographic studies of these resist materials suggest the feasibility of these materials to be used as single and bilayer resists.

  • PDF

Fabrication of metal nanodots and nanowires by atomic force microscopy nanomachining

  • Lin, Heh-Nan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.43-46
    • /
    • 2007
  • The fabrication of metal nanostructures by a combination of atomic force microscopy nanomachining on a thin polymer resist, metal coating and lift-off is reported. Nanodots with sizes and nanowires with widths ranging between 50 and 100 nm have been successfully created. The present work exemplifies the feasibility and effectiveness of using a single-layer resist in comparison with a two-layer resist. In addition, the localized surface plasmon resonance peaks of the metal nanostructures have been measured and the selective growths of zinc oxide nanowires on the metal nanostructures are demonstrated.

  • PDF

A Study on Cause of Defects in NIL Molding Process using FEM (유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구)

  • Song, N.H.;Son, J.W.;Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF

Fabrication of Photosensitive Polymer Resistor Paste and Formation of Finely-Patterned Thick Film Resistors (감광성 폴리머 저항 페이스트 제조와 미세패턴 후막저항의 형성)

  • Kim, Dong-Kook;Park, Seong-Dae;Yoo, Myong-Jae;Sim, Sung-Hoon;Kyoung, Jin-Bum
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.622-627
    • /
    • 2009
  • Using an alkali-solution developable photosensitive resin and a carbon black as a conductive filler, photo-patternable pastes for polymer thick film resistor were fabricated and evaluated. A photo solder resist (PSR), which is usually used as protecting layer of printed circuit board (PCB), was used as a photosensitive resin so that ultraviolet exposure and alkali-aqueous solution development of paste were possible. After fabricating the photosensitive polymer resistor paste, the electrical properties of thick film resistors were measured using PCB test boards. Sheet resistance was decreased with increasing amount of carbon black, but the developability was limited in excess loading of carbon black. The sheet resistance was also reduced by re-curing and the change rate was smaller in higher carbon black loading. Moreover, finely patterned meander-type thick film resistors were fabricated using photo-process and large resistance up to several tens of sheet resistance could be obtained in small area by this technique.

Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds

  • Cho, Seung-Hyun;Lim, Hyun-Soon;Jeon, Byung-Kuk;Ko, Jung-Min;Lee, Jun-Young;Ki, Whan-Gun
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Photoreactive polymers as a color filter resist containing both photoreactive acrylate and cinnamate double bonds were synthesized usin two step reactions. The chemical structures of the synthesized polymers were confirmed by $^1H$-NMR and FT-IR spectroscopy. The photoreactive polymers were quite soluble in most common organic solvents and produced excellent quality thin films by spin-coating. The photocuring kinetics of the acrylate and cinnamate double bonds were examined by FT-IR and UV- Vis spectroscopy, which confirmed the excellent photoreactivity of both the acrylate and cinnamate double bonds in the polymers. Upon UV irradiation, photocuring was almost completed within approximately 5 min, irrespective of the type of the prepolymers. The polymers also exhibited superior thermal stability, showing little change in transmittance in the visible region even after heating to $250^{\circ}C$ for one hour. Photolithographic micropatterns could be obtained with a resolution of a few microns.

Role of $N_2$ flow rate on etch characteristics and variation of line edge roughness during etching of silicon nitride with extreme ultra-violet resist pattern in dual-frequency $CH_2F_2/N_2$/Ar capacitively coupled plasmas

  • Gwon, Bong-Su;Jeong, Chang-Ryong;Lee, Nae-Eung;Lee, Seong-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.458-458
    • /
    • 2010
  • The process window for the etch selectivity of silicon nitride ($Si_3N_4$) layers to extreme ultra-violet (EUV) resist and variation of line edge roughness (LER) of EUV resist were investigated durin getching of $Si_3N_4$/EUV resist structure in a dual-frequency superimposed capacitive coupled plasma (DFS-CCP) etcher by varying the process parameters, such as the $CH_2F_2$ and $N_2$ gas flow rate in $CH_2F_2/N_2$/Ar plasma. The $CH_2F_2$ and $N_2$ flow rate was found to play a critical role in determining the process window for infinite etch selectivity of $Si_3N_4$/EUV resist, due to disproportionate changes in the degree of polymerization on $Si_3N_4$ and EUV resist surfaces. The preferential chemical reaction between hydrogen and carbon in the hydrofluorocarbon ($CH_xF_y$) polymer layer and the nitrogen and oxygen on the $Si_3N_4$, presumably leading to the formation of HCN, CO, and $CO_2$ etch by-products, results in a smaller steady-state hydrofluorocarbon thickness on $Si_3N_4$ and, in turn, in continuous $Si_3N_4$ etching due to enhanced $SiF_4$ formation, while the $CH_xF_y$ layer is deposited on the EUV resist surface. Also critical dimension (and line edge roughness) tend to decrease with increasing $N_2$ flow rate due to decreased degree of polymerization.

  • PDF

A Study on Wafer-Level Package of RF MEMS Devices Using Dry Film Resist (Dry Film Resist를 이용한 RF MEMS 소자의 기판단위 실장에 대한 연구)

  • Kang, Sung-Chan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.379-380
    • /
    • 2008
  • This paper presents a wafer-level package using a Dry Film Resist(DFR) for RF MEMS devices. Vertical interconnection is made through the hole formed on the glass cap. Bonding using the DFR has not only less effects on the surface roughness but also low process temperature. We used DFR as adhesive polymer and made the vertical interconnection through Au electroplating. Therefore, we developed a wafer-level package that is able to be used in RF MEMS devices and vertical interconnection.

  • PDF