• Title/Summary/Keyword: polymer latex

Search Result 118, Processing Time 0.023 seconds

Effect of protective colloid on the synthesis of Poly(Vinyl acetate-co-Ethyl acrylate) (Poly(VAc-co-EA) 공중합체 제조에 있어 보호콜로이드의 영향에 관한 연구)

  • Kim, Nam-Seok;Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.216-221
    • /
    • 2010
  • Polyvinyl acetate (PVAc) prepared by emulsion polymerization has broad applications for additive such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly (vinyl acetate-eo-ethyl acrylate) (VAc-EA) was synthesized using potassium persulfate as catalyst and polyvinylalcohol (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced adhesion, water resistance during VAc-EA emulsion polymerization. No coagulation and complete conversion occur with the reactant mixture of 10 mmol/L potassium persulfate, 10 mmol/L poly ( vinyl alcohol) (PVA 17). As the concentrations of PVA increase, the viscosity becomes increase.

Room Temperature Chemical Vapor Deposition for Fabrication of Titania Inverse Opals: Fabrication, Morphology Analysis and Optical Characterization

  • Moon, Jun-Hyuk;Cho, Young-Sang;Yang, Seung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2245-2248
    • /
    • 2009
  • This paper demonstrates room temperature chemical vapor deposition (RTCVD) for fabricating titania inverse opals. The colloidal crystals of monodisperse polymer latex spheres were used as a sacrificial template. Titania was deposited into the interstices between the colloidal spheres by altermate exposures to water and titanium tetrachloride (Ti$Cl_4$) vapors. The deposition was achieved under atmospheric pressure and at room temperature. Titania inverse opals were obtained by burning out the colloidal template at high temperatures. The filling fraction of titania was controlled by the number of deposition of Ti$Cl_4$ vapor. The morphology of inverse opals of titania were investigated. The optical reflection spectra revealed a photonic band gap and was used to estimate the refractive index of titania.

The Physical Properties of RTFL Adhesive for Bonding SBR to Nylon (SBR과 나일론 접착을 위한 RTFL 접착제의 물성)

  • Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.28 no.4
    • /
    • pp.274-282
    • /
    • 1993
  • Resorcinol-tannin-formaldehyde-latex(RTFL) adhesive was prepared to bond SBR to nylon in reinforced rubber composites. A key factor of adhesive contributes to the adhesion strength between SBR and nylon was the toughness of adhesive itself. Although the stiffness and strength of adhesive film decreased slightly with increasing level of tannin substitution for resorcinol in a standard RFL adhesive, the maximum toughness of adhesive film, which showed yield behavior and high dissipative capacity, was obtain by 60% tannin substitution. However, a marked softening and reduction in toughness occurred at sufficiently high substitution. Also, the adhesive film, which was heat-treated to simulate cure, showed higher strength than the unheated film. Thus, the properties of tannin containing adhesives could be optimized by using 40/60 weight ratio of the resorcinol/tannin in RTFL adhesive composition as well as heat treatment of adhesive film.

  • PDF

Diffusional Behaviors of the Fabricated Polymeric Films Containing Various Excipients (다양한 첨가제를 함유하는 고분자 필름의 확산거동)

  • Lee, Beom-Jin;Jung, Hyun;Cui, Jing-Hao;Kim, Soo-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.185-191
    • /
    • 1999
  • The polymeric films containing drug and various excipients were fabricated using aqueous-based $Eudragit^{\circledR}$ RS 30D dispersions. The diffusional behaviors and mechanism of the fabricated polymeric film were investigated using Keshary-Chien diffusion cell. The melatonin was used as a model drug. The diffusion behaviors of drug through the fabricated polymeric films were highly dependent on drug concentration in donor part, polymer contents and drug concentration, and the types of plasticizers and solubilizers. The fabricated polymeric films containing excipients and solubilizers could be applied for the controlled release of poorly water-soluble drug and for the preparation of drug-containing latex films for topical or oral drug delivery.

  • PDF

Separation of Colloidal Particles by Osmotic Sink Field Flow Fractionation Using UF Hollow Fiber Membranes

  • Shin, Se-Jong;Min, Byoung-Ryul;Park, Jin-Won;Ahh, Ik-Sung;Lee, Kang-Taek;Lee, Jae-Hoon
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 2001
  • Unlike existent field flow fractionation, new method, osmotic sink field flow fractionation is introduced and used ultrafiltration hollow fiber membranes as separation channel. This hollow fiber osmotic sink field flow fractionation is called HF-OSFFF. A theory that describes the retention, relaxation, resolution, plate number for the system, has been developed and experimentally verified by separation model of po1ystyrene latex beads. At external field, it is measured that radial flow rates change according to various concentrations of PEG solutions. Concentration of PEG solution vs. radial flow rate is a linear relation. For diameter distribution of unknown polymer sample, HF-OSFFF compared with the commercial capillary hydrodynamic flow fractionation (CHDF).

  • PDF

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites (섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.145-155
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced fly ash$\cdot$lime$\cdot$gypsum composites are presented in this paper. 'The composites using fly ash, lime, and gypsum were prepared with various fibers (PAN-derived and Pitch-derived carbon fiber, alkali-resistance glass fiber) and a small amount of polymer emulsion-styrene butadiene rubber latex (SBR). As the test results show, the manufacturing process technology of fly ash$\cdot$lime$\cdot$gypsum composites was developed and its optimum mix proportions were successfully proposed. And the flexural strength and toughness of fiber reinforced fly ash$\cdot$lime $\cdot$gypsum composites were increased remarkably by fiber contents, but the compressive strength of the composites were influenced by the kinds fiber more than by the fiber contents. Also, the addition of a polymer emulsion to the composites decreased the bulk specific gravity, but the compressive and flexural strength, and the toughness of the composites were not influenced by it, but were considerably improved by increasing fiber contents.

Determination of homogeneity index of cementitious composites produced with eps beads by image processing techniques

  • Comak, Bekir;Aykanat, Batuhan;Bideci, Ozlem Salli;Bideci, Alper
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.107-115
    • /
    • 2022
  • With the improvements in computer technologies, utilization of image processing techniques has increased in many areas (such as medicine, defence industry, other industries etc.) Many different image processing techniques are used for surface analysis, detection of manufacturing defects, and determination of physical and mechanical characteristics of composite materials. In this study, cementitious composites were obtained by addition of Grounded Granulated Blast-Furnace Slag (GGBFS), Styrene Butadiene polymer (SBR), and Grounded Granulated Blast-Furnace Slag and Styrene Butadiene polymer together (GGBFS+SBR). Expanded Polystyrene (EPS) beads were added to these cementitious composites in different ratios (20%, 40% and 60%). The mechanical and physical characteristics of the composites were determined, and homogeneity indexes of the composites were determined by image processing techniques to determine EPS distribution forms in them. Physical and mechanical characteristics of the produced samples were obtained by applying consistency, density, water absorption, compressive strength (7 and 28 days), flexural strength (7 and 28 days) and tensile splitting strength (7 and 28 days) tests on them. Also, visual examination by using digital microscope, and image analysis by using image processing techniques with open source coded ImageJ program were performed. As a result of the study, it is determined that GGBFS and SBR addition strengthens the adhesion sites formed as it increases the adhesion power of the mixture and helps to get rid of the segregation problem caused by EPS. As a result of the image processing analysis it is demonstrated that GGBFS and SBR addition has positive contribution on homogeneity index.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.