• Title/Summary/Keyword: polymer encapsulation

Search Result 104, Processing Time 0.026 seconds

A Sutdy on Organic Emission Device of Chitosan Used (키토산을 이용한 유기 발광 소자에 관한 연구)

  • Jung, Ki-Taek;Kang, Soo-Jung;Kim, Nam-Ki;Roh, Seung-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1062-1065
    • /
    • 2004
  • The importance of display is becoming increasingly important due to the development of information and industry where it leads to diverse and abundant information in today's society. The demand and application range for FPD(Flat Panel Display), specifically represented by LCD(Liquid Crystal Display) and PDP(Plasma Display Panel), have been rapidly growing for its outstanding performance and convenience amongst many other forms of display. The current focus has been on OLED(Organic Light Emitting Diode) in the mobile form, which has just entered into mass production amid the different types of FPD. Many studies are being conducted in regards to device, vacuum evaporation, encapsulation, and drive circuits with the development of device as a matter of the utmost concern. This study develops a new type of light-emitting materials by synthesizing medical polymer organic chitosan and phosphor material CuS. Chitosan itself satisfies the Pool-Frenkel Effect, an I-V specific curve, with a thin film under $20{mu}m$, and demonstrates production possibility for a living body sensors solely with the thin film. Furthermore, it enables production possibility for EML of organic EL device(Emitting Layer) with liquid Green light emitting and Blue light emitting as a result of synthesis with phosphor material.

  • PDF

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Closed Drift Linear Source 공정을 이용한 SiOxCyHz barrier films 제작

  • Gang, Yong-Jin;Lee, Seung-Hun;Kim, Jong-Guk;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.186-186
    • /
    • 2012
  • 최근 Flexible organic electronics 분야에 대한 관심과 더불어 소자의 산소 및 수분의 침투를 방지하기 위한 투습방지막 연구가 활발히 진행되고 있다. 이에 본 연구에서는 Closed Drift Linear Source(CDLPS) 플라즈마 공정을 이용하여 저온 고속의 $SiO_xC_yH_z$ barrier flims 형성 연구를 진행하였다. HMDSO(hexamethyldisiloxane), TMS(trimethylsilane)와 산소를 기반으로 HMDSO/HMDSO+산소의 비율에 따라 $Si(-O_x)$ 변화에 따른 특성 평가를 진행하였다. X-ray photoelectrom spectroscopy(XPS) 및 Ft-IR spectrometer 측정 시 3.7% 비율에서 실리콘 원소가 산소 라디칼과 효율적인 반응을 함으로써 단일한 $SiO_2$ 박막이 형성됨을 확인 하였다. 그와 반면에 비율의 증가로 인해 다량의 HMDSO 물질이 주입 되었을 시 산소 라디칼과 충분히 반응 되지 못하여 $SiO_2$에 비해 $Si(CH)_x$ 가 많이 함량 된 Polymer like한 $SiO_x$가 많이 형성되었다. 박막의 증착율의 경우에는 3.7%에서 18%로 증가함에 따라 35 nm/min에서 180 nm/min의 증착율을 가지는 것을 확인 하였다. 3.7% 비율의 단일 $SiO_2$ 공정 조건으로 유기태양전지에 형성 하였을 시 소자의 에너지 변환 효율(PCE)이 변화 없는 것을 확인하였다. 이는 기존 공정에 비해 CDLPS 플라즈마 공정의 경우 유기소자에 플라즈마로 인한 열에너지나 이온 충격 에너지로 인한 영향 없는 것을 확인 할 수 있다. 이런 장점을 통해 CDSPS를 이용한 공정 기술은 다양한 유기 소자의 barrier 형성 연구에 큰 도움이 될 것이다.

  • PDF

Injectable TGF-beta 3-conjugated hyaluronic acid hydrogel for cartilage regeneration

  • Ko, Ki Seong;Lee, Jung Seok;Park, Kyung Min;Lee, Yunki;Oh, Dong Hwan;Son, Joo Young;Kwon, Oh Hee;Eom, Min Yong;Park, Ki Dong
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Facile immobilization of growth factors in hyaluronic acid (HA) hydrogels using dual enzymes is reported in the paper. The hydrogels were formed by using horseradish peroxidase (HRP) and hydrogen peroxide ($H_2O_2$) and transforming growth factor-${\beta}3$ (TGF-${\beta}3$) was covalently conjugated on the hydrogels in situ using tyrosinase (Ty) without any modifications. For the preparation of hydrogels, HA was grafted with poly(ethylene glycol) (PEG), which was modified with a tyrosine. The gelation times of the HA hydrogels were ranging from 415 to 17 s and the storage moduli was dependent on the concentration of $H_2O_2$ and Ty (470-1600 Pa). A native TGF-${\beta}3$ (200 ng/mL) was readily encapsulated in the HA hydrogels and 17% of the TGF-${\beta}3$ was released over 1 month at the Ty concentration of 0.5 KU/mL, while the release was faster when 0.3 KU/mL of Ty was used for the encapsulation (27%). It can be suggested that the growth factors resident in the hydrogels for a long period of time may lead cells proliferating and differentiating, whereas the growth factors that are initially released from the hydrogels can induce the ingrowth of cells into the matrices. Therefore, the dual enzymatic methods as facile gel forming and loading of various native growth factors or therapeutic proteins could be highly promising for tissue regenerative medicines.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Physical Properties and Preparation of HDPE Filled with Microencapsulated Glass Beads (마이크로 캡슐화된 Glass bead 충전 HDPE 복합재의 제조와 물리적 성질)

  • Kim, Dong-Kook;Kim, Kwang-Ho;Im, Seung-Soon;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.430-439
    • /
    • 1992
  • To improve the adhesion of interface and dispersion of glass beads in the composite, HDPE filled with glass brads, we encapsulated the g1ass beads with polymer by phase separation method using complex coacervation in organic solvent. EMAA and EAA were used as the polymeric wall materials. The microencapsulation efficiency and morphology were observed by thermogravimetric analysis and SEM, respectively. And also we investigated the physical and dynamic mechanical properties of the composite as the function of the beads contents and microencapsulation efficiency. Compared with the composite containing non-treated glass beads, the decrease in tensile strengthe of the composites containing the encapsulated glass beads become markedly small, and about 30~40% Increase in tensile modulus was observed. From the results of the dynamic mechanical analysis, it was found that the adhesion of interface and dispersion could be improved upon encapsulation.

  • PDF

Docetaxel-loaded PLGA nanoparticles to increase pharmacological sensitivity in MDA-MB-231 and MCF-7 breast cancer cells

  • Tran, Phuong;Nguyen, Thu Nhan;Lee, Yeseul;Tran, Phan Nhan;Park, Jeong-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.479-488
    • /
    • 2021
  • This study aimed to develop docetaxel (DTX) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (DTX-NPs) and to evaluate the different pharmacological sensitivity of NPs to MCF-7 and MDA-MB-231 breast cancer cells. NPs containing DTX or coumarin-6 were prepared by the nanoprecipitation method using PLGA as a polymer and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a surfactant. The physicochemical properties of NPs were characterized. In vitro anticancer effect and cellular uptake were evaluated in breast cancer cells. The particle size and zeta potential of the DTX-NPs were 160.5 ± 3.0 nm and -26.7 ± 0.46 mV, respectively. The encapsulation efficiency and drug loading were 81.3 ± 1.85% and 10.6 ± 0.24%, respectively. The in vitro release of DTX from the DTX-NPs was sustained at pH 7.4 containing 0.5% Tween 80. The viability of MDA-MB-231 and MCF-7 cells with DTX-NPs was 37.5 ± 0.5% and 30.3 ± 1.13%, respectively. The IC50 values of DTX-NPs were 3.92- and 6.75-fold lower than that of DTX for MDA-MB-231 cells and MCF-7 cells, respectively. The cellular uptake of coumarin-6-loaded PLGA-NPs in MCF-7 cells was significantly higher than that in MDA-MB-231 cells. The pharmacological sensitivity in breast cancer cells was higher on MCF-7 cells than on MDA-MB-231 cells. In conclusion, we successfully developed DTX-NPs that showed a great potential for the controlled release of DTX. DTX-NPs are an effective formulation for improving anticancer effect in breast cancer cells.

ALD-based Functional Bragg Reflector Structure to Block Harmful Ultraviolet Rays that Affect the Reliability of Organic Devices (유기소자의 신뢰성에 영향을 주는 유해 자외선을 차단하기 위한 ALD기반 기능성 브래그반사경 구조)

  • Hyeun Woo Kim;Hyeong Jun Lee;Seungmi Jang;Hyeongjun Yun;Dokyun Lee;Yongmin Lee;Sangyeon Park;Jihoon Jung;Seokjun Lim;Jeong Hyun Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • To solve the reliability problem of organic devices that are often used outdoors, multifunctional gas barriers that block reactive gases such as moisture and oxygen and reflect harmful light such as ultraviolet rays are needed. In this study, ALD nanolaminate-based optically functional n-DBR was developed to overcome the poor gas permeability of polymer substrates and protect organic devices from harmful light. n-DBR not only achieved a WVTR of 8.76 × 10-6 g·m-2·day-1, but also showed a visible light transmittance of 94.3% and an ultraviolet ray blocking ability of 2.67%. In particular, n-DBR based on a nanolaminate structure maintained its permeability characteristics even in a high temperature and high humidity environment despite being used as a layer of Al2O3. This functional barrier Structure can not only be used as a functional encapsulation barrier for the reliability of organic devices, but can also be used as a tinting film for vehicles.

  • PDF

Development of Porous Cellulose-Hydrogel System for Enhanced Transdermal Delivery of Quercetin and Rutin (Quercetin과 Rutin의 피부 흡수 증진을 위한 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Lee, Min Hye;Kim, Su Ji;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.347-355
    • /
    • 2013
  • In this study, the porous cellulose hydrogel as a carrier to enhance the skin delivery of quercetin and its glycoside, rutin known as flavonoid antioxidants was prepared and its properties were investigated. The optimum cellulose hydrogel for quercetin and rutin was made by the reaction of 2 wt% cellulose with 12% ECH. In the release test of the hydrogel containing the flavonoids, the release of quercetin was diffusion-controlled at $10{\sim}500{\mu}M$, but rutin was released by the erosion of hydrogel system at $10{\sim}50{\mu}M$. Both the encapsulation efficiency and release amount of rutin in hydrogel were higher than quercetin. However, in skin permeation experiment using Franz diffusion cell, quercetin showed higher skin permeation capacity than rutin. The hydrogel containing flavonoids showed remarkable transdermal permeation than the control group. These results suggest that porous cellulose hydrogel is potential drug delivery system to enhance transdermal permeation of water-insoluble flavonoid antioxidants.

Micropatterning of Polyimide and Liquid Crystal Elastomer Bilayer for Smart Actuator (스마트 액추에이터를 위한 폴리이미드 및 액정 엘라스토머 이중층의 미세패터닝)

  • Yerin Sung;Hyun Seung Choi;Wonseong Song;Vanessa;Yuri Kim;Yeonhae Ryu;Youngjin Kim;Jaemin Im;Dae Seok Kim;Hyun Ho Choi
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.169-274
    • /
    • 2024
  • Recent attention has been drawn to materials that undergo reversible expansion and contraction in response to external stimuli, leading to morphological changes. These materials hold potential applications in various fields including soft robotics, sensors, and artificial muscles. In this study, a novel material capable of responding to high temperatures for protection or encapsulation is proposed. To achieve this, liquid crystal elastomer (LCE) with nematic-isotropic transition properties and polyimide (PI) with high mechanical strength and thermal stability were utilized. To utilize a solution process, a dope solution was synthesized and introduced into micro-printing techniques to develop a two-dimensional pattern of LCE/PI bilayer structures with sub-millimeter widths. The honeycomb-patterned LCE/PI bilayer mesh combined the mechanical strength of PI with the high-temperature contraction behavior of LCE, and selective printing of LCE facilitated deformation in desired directions at high temperatures. Consequently, the functionality of selectively and reversibly encapsulating specific high-temperature materials was achieved. This study suggests potential applications in various actuator fields where functionalities can be implemented across different temperature ranges without the need for electrical energy input, contingent upon molecular changes in LCE.