DOI QR코드

DOI QR Code

Development of Porous Cellulose-Hydrogel System for Enhanced Transdermal Delivery of Quercetin and Rutin

Quercetin과 Rutin의 피부 흡수 증진을 위한 셀룰로오스 다공성 하이드로젤 제형 개발

  • Lee, Min Hye (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Soeul National University of Science and Technology) ;
  • Kim, Su Ji (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Soeul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Soeul National University of Science and Technology)
  • 이민혜 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 김수지 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소)
  • Received : 2012.11.22
  • Accepted : 2013.01.22
  • Published : 2013.05.25

Abstract

In this study, the porous cellulose hydrogel as a carrier to enhance the skin delivery of quercetin and its glycoside, rutin known as flavonoid antioxidants was prepared and its properties were investigated. The optimum cellulose hydrogel for quercetin and rutin was made by the reaction of 2 wt% cellulose with 12% ECH. In the release test of the hydrogel containing the flavonoids, the release of quercetin was diffusion-controlled at $10{\sim}500{\mu}M$, but rutin was released by the erosion of hydrogel system at $10{\sim}50{\mu}M$. Both the encapsulation efficiency and release amount of rutin in hydrogel were higher than quercetin. However, in skin permeation experiment using Franz diffusion cell, quercetin showed higher skin permeation capacity than rutin. The hydrogel containing flavonoids showed remarkable transdermal permeation than the control group. These results suggest that porous cellulose hydrogel is potential drug delivery system to enhance transdermal permeation of water-insoluble flavonoid antioxidants.

본 연구에서는 항산화제인 quercetin과 그 배당체인 rutin의 피부 흡수를 증진시키기 위한 전달체로 다공성 셀룰로오스 하이드로젤을 제조하였고 그 특성을 연구하였다. Quercetin과 rutin을 위한 최적의 하이드로젤을 가교제인 12% epichlorohydrin(ECH)과 2% 셀룰로오스를 반응용액으로 하여 만들었다. 플라보노이드 함유 하이드로젤의 방출 실험에서, quercetin의 방출은 $10{\sim}500{\mu}M$ 농도에서 확산 속도에 영향을 받았으나, rutin의 경우는 비교적 낮은 농도($10{\sim}50{\mu}M$)에서 하이드로젤의 침식에 의한 방출이 지배적이었다. 플라보노이드에 대한 하이드로젤의 포집효율과 방출량은 quercetin보다도 rutin에서 모두 크게 나타났다. 하지만, Franz diffusion cell을 이용한 피부 투과 실험에서 quercetin이 rutin보다 1.2배나 더 큰 피부 투과능을 나타냈다. 플라보노이드 함유 하이드로젤은 대조군인 20% 1,3-butylene glycol phosphate buffer에서보다도 더 큰 경피 투과능을 나타내었다. 이 결과들은 난용성 항산화제인 플라보노이드의 피부 흡수 증진 전달체로서 셀룰로오스 다공성 하이드로젤이 이용 가능성이 있음을 시사한다.

Keywords

Acknowledgement

Supported by : 보건복지부

References

  1. J. Robak and R. J. Cryglewski, Pol. J. Pharmacol., 48, 555 (1996).
  2. I. Erlund, Nutr. Res., 24, 851 (2004). https://doi.org/10.1016/j.nutres.2004.07.005
  3. Y. Yamamoto and R. B. Gaynor, J. Clin. Invest., 107, 135 (2001). https://doi.org/10.1172/JCI11914
  4. T. P. T. Cushnie and A. J. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005). https://doi.org/10.1016/j.ijantimicag.2005.09.002
  5. R. R. de Sousa, K. C. Queiroz, A. C. Souza, S. A. Gurgueira, A. C. Augusto, M. A. Miranda, M. P. Peppelenbosch, C. V. Ferreira, and H. Aoyama, J. Enzyme Inhib. Med. Chem., 22, 439 (2007). https://doi.org/10.1080/14756360601162063
  6. C. F. Skibola and M. T. Smith, Free Radix, Biol. Med., 28, 375 (2000).
  7. C. A. Rice-Evans, N. J. Miller, and G. Paganga, Trends Plant Sci., 2, 152 (1997). https://doi.org/10.1016/S1360-1385(97)01018-2
  8. I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard, and J. Cilard, Biochem. Pharmacol., 45, 13 (1993). https://doi.org/10.1016/0006-2952(93)90371-3
  9. M. F. A. Bakar, M. Mohgamed, A. Rahmat, and J. Fry, Food Chem., 113, 479 (2009). https://doi.org/10.1016/j.foodchem.2008.07.081
  10. J. Yang, J. Guo, and J. Tuan, LWT-Food Science and Technology, 41, 1060 (2008). https://doi.org/10.1016/j.lwt.2007.06.010
  11. C. Wangner, R. Fachineto, C. L. Morel, C. W. Nogueira, and J. B. T. Rocha, Brain Res., 1107, 192 (2006). https://doi.org/10.1016/j.brainres.2006.05.084
  12. A. Saija A. Tomaino, D. Trombetta, M. Giacchi, A. D. Pasquate, and F. Bonine, Int. J. Pharm., 175, 85 (1998). https://doi.org/10.1016/S0378-5173(98)00259-2
  13. D. Paolino, G. Lucania, D. Mardente, F. Alhaique, and M. Fresta, J. Control. Release, 106, 99 (2005). https://doi.org/10.1016/j.jconrel.2005.04.007
  14. L. Schwingel, D. Fasolo, M. Holzchuh, I. Lula, R. Sinisterra, L. Koester, H. Teixeira, and V. L. Bassani, J. Incl. Phenom. Macrocycl. Chem., 62, 149 (2008). https://doi.org/10.1007/s10847-008-9450-4
  15. S. N. Park, M. S. Lim, M. A. Park, S. S. Kwon, and S. B. Han, Polymer(Korea), 36, 705 (2012).
  16. G. N. Lim, S. Y. Kim, M. J. Kim, and S. N. Park, Polymer(Korea), 36, 420 (2012).
  17. J. Chen, S. Jo, and K. Park, Handbook of Biodegradable Polymers, Overseas Publishers Association, Amsterdam, p 203 (1997).
  18. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pram. Biopharm., 50, 27 (2000). https://doi.org/10.1016/S0939-6411(00)00090-4
  19. S. J. Park and C. H. Kim, Tissue Eng. Regen. Med., 4, 471 (2007).
  20. C. Chang and L. Zhang, Carbohyd. Polym., 84, 40 (2011). https://doi.org/10.1016/j.carbpol.2010.12.023
  21. S. J. Eichhorn, R. J. Young, and G. R. Davies, Biomacromolecules, 6, 507 (2005). https://doi.org/10.1021/bm049409x
  22. D. Klemm, B. Heublein, H. Fink, and A. Bohn, Angew. Chem. Int. Ed., 44, 3358 (2005). https://doi.org/10.1002/anie.200460587
  23. J. Schurz, Prog. Polym. Sci., 24, 481 (1999). https://doi.org/10.1016/S0079-6700(99)00011-8
  24. D. Ciolacu, A. M. Oprea, N. Anghel, G. Cazacu, and M. Cazacu, Mat. Sci. Eng. C-Mater., 32, 452 (2012). https://doi.org/10.1016/j.msec.2011.11.018
  25. J. C. Fantone and P. A. Ward, Ann. J. Path., 107, 397 (1982).
  26. G. F. Vile and R. M. Tyrrell, Free Radical Biol. Med., 18, 721 (1995). https://doi.org/10.1016/0891-5849(94)00192-M
  27. T. F. Slater, Biochem. J., 222, 1 (1984).
  28. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Photodermatology, 2, 15 (1985).
  29. J. J. Threle, C. Schroeter, S. N. Hsieh, M. Podda, and L. Packer, Curr. Probl. Dermatol., 29, 26 (2001).
  30. P. L. Rittger and N. A. Peppas, J. Control. Release, 5, 37 (1987). https://doi.org/10.1016/0168-3659(87)90035-6
  31. G. M. Khan and J. b. Zhu, J. Control. Release, 57, 197 (1999). https://doi.org/10.1016/S0168-3659(98)00122-9
  32. J. H. Cha, J. K. Hong, S. W. Lee, J. U. Cha, W. H. Ko, H. H. Baek, and H. J. Park, Korean J. Food Sci. Technol., 44, 274 (2012). https://doi.org/10.9721/KJFST.2012.44.3.274
  33. J. Siepmann and N. A. Peppas, Adv. Drug Deliv. Rev., 48, 139 (2001). https://doi.org/10.1016/S0169-409X(01)00112-0

Cited by

  1. Enhanced skin delivery of liquiritigenin and liquiritin-loaded liposome-in-hydrogel complex system vol.36, pp.6, 2014, https://doi.org/10.1111/ics.12156
  2. tinctures vol.134, pp.41, 2017, https://doi.org/10.1002/app.45392
  3. 아로니아 베리 열매 및 잎 추출물의 항산화 활성 vol.39, pp.4, 2013, https://doi.org/10.15230/scsk.2013.39.4.337