• 제목/요약/키워드: poly(carbazole)

검색결과 34건 처리시간 0.028초

Investigation of Supporting Electrolyte Effect on Supercapacitor Properties of Poly(Carbazole) Films

  • Duran, Berrin;Unver, Irem Cakmakci;Bereket, Gozen
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권1호
    • /
    • pp.41-49
    • /
    • 2020
  • In this study poly(carbazole) films deposited on stainless steel have been investigated as electrode material for supercapacitor applications. Poly(carbazole) films were electrodeposited using cyclic voltammetry in presence of lithium, sodium and tetrabutylammonium perchlorate salts. Poly(carbazole) films doped with perchlorate anions having different counter cations were characterized by SEM, ATR-FTIR and solid state conductivity measurements. Capacitive behaviours of PCz coated steel electrodes were tested by cyclic voltammetry, charge-discharge analysis and electrochemical impedance spectroscopy. It was found that counter cation of the dopant is significantly effective on the capacitive performance on the obtained PCz films and the PCz film synthesized from lithium perchlorate has the better capacitive performance than the poly(carbazole)s synthesized from sodium perchlorate and tetrabutylammonium perchlorate salts.

Microstructure and Electrical Properties of Poly-N-isopropylacrylamide- N-vinylcarbazole Copolymers

  • Pierson, R.;Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.2057-2060
    • /
    • 2009
  • Conducting poly-N-isopropylacrylamide-N-vinyl carbazole (PNI-nvc) copolymers were synthesized via in situ deposition technique by dissolving different weight percentages of N-vinyl carbazole (10, 20, 30, and 40%). The structural morphology and FT-IR studies support the interaction between PNI and N-vinyl carbazole. The temperaturedependent DC conductivity of PNI-nvc was studied within the range of 300 ${\leq}\;T\;{\leq}$ 500 K, presenting evidence for the transport properties of PNI-nvc. The DC conductivity of PNI-nvc copolymers signifies the future development of new nanocopolymers that acts as a multifunctional material.

Synthesis and Characterization of Poly[9,10-diphenylanthracene-4$^\prime$, 4$^\prime^\prime$-ylenevinylene-3,6-(N-2-ethylhexyl)carbazole]

  • 김윤미;박기민;권순기
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.975-978
    • /
    • 2001
  • A novel poly[9,10-diphenylanthracene-4',4"-ylenevinylene-3,6-(N-2-ethyl hexyl)carbazole] containing alternate diphenylanthracene and carbazole unit was synthesized by the Wittig reaction. The obtained polymer was soluble in common organic solvents and thermally stable up to 380 $^{\circ}C.$ The polymer gives rise to bright blue fluorescence both in solution and in thin solid films. The light emitted from the device (ITO/polymer/Al) was greenish-blue in color and clearly visible in daylight.

Systematic Approaches for Blue Light-emitting Polymers by Introducing Various Naphthalene Linkages into Carbazole Containing PPV Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.258-262
    • /
    • 2013
  • Poly(2,3-naphthalenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), 2,3-PNCPV, poly(2,6-naphthalene vinylenealt- N-ethylhexyl-3,6-carbazolevinylene), 2,6-PNCPV, and poly(1,4-naphthalenevinylene-alt-N-ethylhexyl-3,6- carbazolevinylene), 1,4-PNCPV were synthesized through the Wittig polycondensation reaction. The conjugation lengths of the polymers were controlled by differently linked naphthalenes in the polymer main chain. The resulting polymers were completely soluble in common organic solvents, and exhibited good thermal stability at up to $400^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 357-374 nm and 487-538 nm, respectively. The carbazole and 2,3-linked naphthalene containing 2,3-PNCPV showed a blue PL peak at 487 nm. A single-layer light-emitting diode was fabricated with an ITO/polymer/Al configuration. The electroluminescence (EL) emission of 2,3-PNCPV was shown at 483 nm.

유기 태양 전지 응용을 위한 새로운 카바졸계 고분자 합성 및 특성에 관한 연구 (Synthesis and Characterization of New Poly(2,7-Carbazole) Derivative for Organic Solar Cells)

  • 이상규;김희주;박송주;채은아;조정민;문상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • Polymer solar cells (PSCs) have attracted considerable academic and commercial interest because of their unique advantages, such as the facile manufacture of low cost, flexibility, lightweight, and solution processibility. Recently, high-performance polymer solar cells made from a mixture of poly(2,7-carbazole) derivatives, PCDTBT, and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) have been reported, with maximum power conversion efficiency of 6.1%. In this work, we report new novel copolymers based on poly(2,7-carbazole) derivatives with a suite of electron-deficient moieties or electron-rich units. We systematically investigated the synthesis, thermal stability, as well as the optical and electrochemical properties of these polymers. Detailed synthetic scheme, optical, electrochemical, and photovoltaic properties of the copolymers will be presented.

  • PDF

Synthesis and Properties of PCPP-Based Conjugated Polymers Containing Pendant Carbazole Units for LEDs

  • Jin, Young-Eup;Kim, Sun-Hee;Lee, Hyo-Jin;Song, Su-Hee;Kim, Yun-Na;Woo, Han-Young;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2419-2425
    • /
    • 2007
  • New poly(cyclopenta[def]phenanthrene) (PCPP)-based conjugated copolymers, containing carbazole units as pendants, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs) to show that most of them have higher maximum brightness and EL efficiency. The prepared polymers, Poly(2,6-(4-(6-(Ncarbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP10) and Poly(2,6-(4-(6-(N-carbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene))-co-(2,6-(4,4-dioctyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP7 and CzPCPP5), were soluble in common organic solvents and used as the EL layer in light-emitting diodes (LEDs) of configuration with ITO/PEDOT/polymer/Ca/Al device. The polymers are thermally stable with glass transition temperature (Tg) at 77-100 °C and decomposition temperature (Td) at 423-457 °C. The studies of cyclic voltammetry indicated same HOME levels in all polymers, although the ratios of carbazole units are different. In case of PLEDs with configuration of ITO/PEDOT/CzPCPPs/Ca/Al device, The EL maximum peaks were around 450 nm, which the turn-on voltages were about 6.0-6.5 V. The maximum luminescence of PLEDs using CzPCPP10 was over 4400 cd/m2 at 6.5 V, which all of the maximum EL efficiency were 0.12 cd/A. The CIE coordinates of the EL spectrum of PLEDs using CzPCPP10 was (0.18, 0.08), which are quite close to that of the standard blue (0.14, 0.08) of NTSC.

Synthesis and Luminescent Properties of Blue Light Emitting Polymers Containing a 4,4' or 3,3'-Linked Biphenyl Unit

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.317-321
    • /
    • 2012
  • Poly[4,4'(3,3')-biphenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene], 4,4'(3,3')-PBPMEH-PPV, and poly[4,4'(3,3')-biphenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene], 4,4'(3,3')-PBPCAR-PPV, of varying effective conjugation lengths, were synthesized by the well-known Wittig condensation polymerization between the appropriate biphenyl diphosphonium salts and dialdehyde monomers such as carbazole or dialkoxyphenyl dialdehyde. The conjugation lengths of the polymers were controlled by biphenyl linkages (4,4' or 3,3'). The resulting polymers were highly soluble in common organic solvents and exhibited good thermal stability up to $300^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 314-400 nm and 430-507 nm, respectively. Carbazole and 3,3'-biphenyl containing 3,3'-PBPCAR-PPV showed a blue PL peak at 430 nm. A single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescence (EL) emission of 3,3'-PBPCAR-PPV was shown at 455 nm.

Optical Properties of Poly(N-arylcarbazole-alt-aniline) Copolymers For Polymer Light Emitting Devices

  • Wang, Hui;Ryu, Jeong-Tak;Kim, Yeon-Bo;Kwon, Young-Hwan
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.55-60
    • /
    • 2006
  • Thermally stable and solution-processable poly(N-arylcarbazole-alt-aniline) copolymers with high structural integrity were synthesized in good yields via palladium-catalyzed polycondensation of aniline with corresponding N-arylcarbazole monomers such as N-(2-ethylhexyloxyphenyl)-3,6-dibromocarbazole,bis[6-bromo-N-(2-ethylhexyloxyphenyl)carbazole-3-yl] and N-(4-(2-ethylhexyl)-3,5-dibromomethylene-phenyl) carbazole, respectively. The optical and electrochemical properties of these copolymers were measured and compared with those of poly(N-alkylcarbazole-alt-aniline) copolymer. All synthesized poly(N-arylcarbazole-alt-aniline) copolymers showed maximum UV-Vis absorption peaks at around 300 nm in THF solution, and exhibited maximum photoluminescence peaks in the blue emission range from 430 to 460 nm. It was also found that poly(N-arylcarbazole-alt-aniline) copolymers had wider band gap energy than poly(N-alkylcarbazole-alt-aniline) copolymer.

  • PDF

Enhancement of Short-Circuit Current Density in Solar Cells via Reducing Recombination

  • 김관우;이강영;문병준;이원호;우한영;박태호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.484.1-484.1
    • /
    • 2014
  • Bulk hetero junction (BHJ) polymer solar cells (PSCs) are one of the most promising fields as alternative energy source. Especially, the development of new p-type conjugated polymer is one of the main issues to get core technology. In this study, a series of varied ratio of 3,6-carbazole in poly[9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl-alt-(5,6-bis-(octyloxy)-4,7-di(thiophen-2-yl)benzo-[1,2,5]-thia-diazole)-5,5-diyl] were designed and synthesized. These polymers have good solubility and film formability than PCDTBT which is well known promising material. Investigation of the photovoltaic properties of these new polymers indicated that polymer with 2% of 3,6-carbazole provided higher PCE (3.8% to 4.9%) with enhanced JSC, FF, VOC. We found origin of this improvement using several methods, one of which is reduced bimolecular recombination in polymer.

  • PDF

전하 이동을 이용한 실세스퀴옥산/폴리스티렌 하이브리드 (Silsesquioxane/Polystyrene Hybrid Materials via Charge Transfer Interactions)

  • 최지원;요시키 주조
    • 폴리머
    • /
    • 제31권2호
    • /
    • pp.136-140
    • /
    • 2007
  • Carbazole(electron donor)그룹과 dinitrobenzene(electron acceptor)그룹을 이용하여 전하 이동 작용이 실세스퀴옥산/고분자 하이브리드의 형성 메커니즘으로서 작용할 수 있는지 살펴보는 연구를 진행하였다. 하이브리드 실험은 새롭게 합성된 Poly(carbazole-styrene) (PS/D)와 dinitrobenzyl silsesquioxane (Cube/A)의 톨루엔 용액을 혼합/캐스팅을 하여 만들어진 필름을 이용하였으며 상분리가 없는 투명한 하이브리드 필름이 일부 조건에서 얻어졌다. PS/D및 Cube/A의 $^1H-NMR$분석, 그리고 하이브리드 필름들의 UV 흡수 실험은 실세스퀴옥산에 의한 입체 장애 효과가 없는 조건에서는 acceptor와 donor가 1:1로 전하 이동 착물을 형성할 수 있지만, 상분리가 없는 투명한 실세스퀴옥산 하이브리드는 acceptor/donor의 비율이 0.7 : 1 이하에서 형성된다는 것을 보여주었다. 이 결과들은 또 실세스퀴옥산 한 분자 당 평균 4개의 전하 이동 착물이 형성된다는 하이브리드 나노 구조에 대한 정보도 제공하였다.