• Title/Summary/Keyword: poly(3,4-ethylenedioxythiophene)(PEDOT)

Search Result 134, Processing Time 0.031 seconds

Preparation and Characterization of Poly(3,4-ethylenedioxythiophene) nanoparticles (Poly(3,4-ethylenedioxythiophene) 나노입자의 제조 및 연구)

  • Park, Jeong-Wan;Han, Moon-Gyu;Im, Seong-Soon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.17-20
    • /
    • 2001
  • Poly(3,4-ethylenedioxythiophene) (PEDOT), one of the most successful conducting polymers in the market place, has been attracting much interest because of its excellent environmental stability, high conductivity and transparency in thin, oxidized state. Since PEDOT was first synthesized in early 1990s by Jonas et al., many studies on PEDOT have been done to solve its insoluble property in any organic solvents and to extend its application fields[1]. (omitted)

  • PDF

Base Inhibitor와 Triblock Copolymer를 이용한 고전도도 Poly (3,4-ethylenedioxythiophene)박막의 제작

  • Choi, Sang-Il;Feng, Ma;Kim, Sung-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.349-349
    • /
    • 2012
  • 산화제를 이용 기상중합법을 통해 합성되는 고전도도 Poly (3,4-Ethylenedioxythiophene)(PEDOT) 박막은 OTFT, RFID tag, 또는 연성 디스플레이 같은 분야에 다양한 응용 가능성을 가지고 있으며 이로 인해 최근에 연구가 활발히 진행되고 있다. PEDOT박막의 전극소재로써 가능성은 박막의 중합 정도와 표면 형상에 크게 좌우된다. 특히, Si-웨이퍼 기판 위에 산화제의 균일한 도포 및 산화제 자체의 높은 산도 ($pH{\leq}2$)에 따른 부반응의 억제는 기상중합법을 이용한 PEDOT박막의 합성에 있어 매우 중요하다. PEDOT의 효율적인 중합과 균일한 성장을 위해 산화제에 DUDO 와 PEG-PPG-PEG를 첨가한 혼합 산화제 용액을 제조 기상중합 방법을 통해 PEDOT박막을 제작하였다. 그 결과 산화제만을 사용하여 제작된 박막에 비해 전도도가 최대 3,660 S/cm로 향상된 PEDOT 박막이 합성되었다. 이러한 결과는 PEG-PPG-PEG가 산화제 용액의 균일 도포를 향상시키고 Base Inhibitor로 작용하는 DUDO는 PEDOT 성장 시 중합속도를 조절하고 부반응을 최소화 하여 효율적인 공액 이중 결합의 생성을 촉진한데 주로 기인한다. 따라서 그로인해 조밀하며 마이크로 스케일의 기공이 최소화된 PEDOT박막의 합성이 가능하였다. PEDOT박막의 특성 평가에는 4-point probe, optical microscopy, Field Emission-Scanning Electron Microscope, 등이 사용되었으며 또한 전도도의 향상 원인을 분석하고자 ATR-IR Spectrophotometer를 이용하여 합성된 박막의 작용기를 분석하였다. 이러한 고전도도의 PEDOT 박막이 OTFT의 전극소재로 사용된다면 OTFT소자의 성능 향상에 크게 기여 할 것으로 기대된다.

  • PDF

Electrical property of organic solvent dispersible poly(3,4-ethylenedioxythiophene) / polymeric ionic liquid complex (유기용제 분산형 poly(3,4-ethylenedioxythiophene) / 고분자 이온성 액체 복합체의 전기적 특성)

  • Lee, Tae-Hee;Kim, Tae-Young;Duong, Ha Thi Thuy;Suh, Min-Won;Kim, Jong-Eun;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.146-147
    • /
    • 2008
  • Poly(3,4-ethylenedioxythiophene) (PEDOT) / poly(1-vinyl-3-ethylimidazolium bis(trifluoromethane sulfonyl)imide) (poly(ViEtIm $^+TFSI^-$) complex was prepared for organic solvent dispersible conductive nano particles. By molar ratio, PEDOT / poly(ViEtIm $^+TFSI^-$) complex was polymerized and dispersed in propylene carbonate by 1 wt%. The maximum conductivity of the complexes was $1.2\times10^{-1}$ S/cm.

  • PDF

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part I

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that HF treatment is not desirable for the synthesis of a high quality PEDOT thin film via vapor phase polymerization method. Rather, sole treatment with plasma noticeably improved the quality of APS-SAM on glass surface. As a result, a highly dense and smooth PEDOT thin film was grown on uniform oxidant film-coated APS monolayer surface.

Improvement of Physicochemical Properties of Waterborne Polyurethane/Poly(3,4-ethylenedioxythiophene) Hybrid Thin Films (수분산 Polyurethane/Poly(3,4-ethylenedioxythiophene) 혼성 필름의 물리화학적 특성 향상)

  • Ko, Young Soo;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.587-591
    • /
    • 2013
  • Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is the improvement of physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the anionic type waterborne polyurethane (WPU) chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/WPU organic-organic hybrid conductive thin films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and WPU portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a decreasing tendency with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked WPU due to curing reactions between carboxyl groups.

Solvent Effects on the Charge Transport Behavior in Poly(3,4-ethylenedioxythiophene) Synthesized with Iron (III) -p-toluenesulfonate (Iron(III)-p-toluenesulfonate로 합성된 Poly(3,4-ethylenedioxythiophene)의 전하전달현상에 미치는 유기용매의 영향)

  • Park, Chang-Mo;Kim, Tae-Young;Kim, Won-Jung;Kim, Yun-Sang;Suh, Kwang-S
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.363-367
    • /
    • 2005
  • The effects of organic solvent on the charge transport behavior of poly (3,4-ethylenedioxythioph one)/p-toluene-sulfonate(PEDOT-OTs) are investigated. The use of different organic solvents during the oxidative chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) with Iron(III) -tosylate can greatly vary the DC conductivity of PEDOT-OTs along with molecular structure and doping concentration. For example, PEDOT-OTs prepared from methanol shows the conductivity of 19.5 S/cm, which is an increase by a factor of $10^8$ compared to PEDOT-OTa prepared from acetone. From the X-ray diffraction (XRD) experiments, it was found that PEDOT-OTs with ketone is amorphous state, while PEDOT-OTs with alcoholic solvent shows the better defined crystalline structure in which the charge transport along and between the PEDOT chains are promoted. Chemical analysis employing X-ray photoelectron spectroscopy (XPS) revealed that the doping concentration of PEDOT-OTs with alcoholic solvent is much higher than that of PEDOT-OTs with ketones. It is proposed that the interactions between the organic solvent and doping anion can cause the variation in doping concentration and, therefore, result in the PEDOT-OTs of different conductivities and chain structures.

Study on Binders for Preparing Antistatic Films of PEDOT/PSS (대전방지 PEDOT/PSS 필름 제조를 위한 바인더에 관한 연구)

  • Kim, Seok Jun;Park, Wan-Su;Hwang, Jung Seok;Pak, Na Young;Choi, Young Ju;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.458-462
    • /
    • 2015
  • It is essential to employ a binder to prepare transparent films from conductive polymer such as poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS). In this paper, poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), and PSS were selected as a binder, and their effects were investigated. The formation of the film was found to be primarily dependent on the surface tension of coating solution including PEDOT/PSS and a binder. When PSS was used as a binder, the film was not formed. In case of using PVP, it was easily peeled off from the substrate. However, when using the PVA or the mixtures of PVA and PSS or PVA and PVP as a binder, films with good transparency and uniform surface resistances were produced. Based on adhesion and long-term stability tests, we concluded that the mixture of PVA and PSS is the best binder for preparing antistatic films of PEDOT/PSS.

Patterning of poly(3,4-ethylenedioxythiophene)(PEDOT) Thin Films by Using Self-assembled Monolayers(SAMs) Patterns Formed by Ultra-violet(UV) Lithography (UV를 사용한 SAMs 패터닝과 PEDOT의 선택적 증착에 관한 연구)

  • Kwon, T.W.;Lee, J.;Lee, J.G.
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.619-623
    • /
    • 2006
  • Selective vapor deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT), thin films has been carried out on self assembled monolayers patterned oxide substrate. Since the 3,4-ethylenedioxythiophene(EDOT) monomer can be polymerized only in the presence of oxidant such as $FeCl_3$, the PEDOT thin film is selectively deposited on patterned $FeCl_3$, which only adsorbs on the partly removed SAMs region due to the inability of $FeCl_3$ to adsorb on SAMs. Therefore, the partly removed SAMs can act as an adsorption layer for the $FeCl_3$ and also as a glue layer for the deposition of PEDOT, resulting in the significantly increased adhesion of PEDOT to $SiO_2$ substrate. The use of UV lithography and Cr patterned quartz mask provided the formation of SAMs patterns on oxide substrates, which allowed for the selective deposition of conductive PEDOT thin films.$^{oo}The$ new process was successfully developed for the selective deposition of PEDOT thin films on SAMs patterned oxide substrate, providing a new way for the patterning of vapor phase deposition of PEDOT thin films with accurate alignment and addressing the inherent adhesion issues between PEDOT and dielectrics.

Selective Vapor-Phase Deposition of Conductive Poly(3,4-ethylenedioxythiophene) Thin Films on Patterned FeCl3 Formed by Microcontact Printing

  • Lee, Bo H.;Cho, Yeon H.;Shin, Hyun-Jung;Kim, Jin-Yeol;Lee, Jae-gab;Lee, Hai-won ;Sung, Myung M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1633-1637
    • /
    • 2006
  • We demonstrate a selective vapor-phase deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin films on patterned $FeCl_3$. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with $FeCl_3$ catalytic layers at 325 K. The selective deposition of the PEDOT thin films using vapor-phase polymerization was accomplished with patterned $FeCl_3$ layers as templates. Microcontact printing was done to prepare patterned $FeCl_3$ on polyethyleneterephthalate (PET) substrates. The selective vapor-phase deposition is based on the fact that the PEDOT thin films are selectively deposited only on the regions exposing $FeCl_3$ of the PET substrates, because the EDOT monomer can be polymerized only in the presence of oxidants, such as $FeCl_3$, Fe($CIO_4$), and iron(II) salts of organic acids/inorganic acids containing organic radicals.